Chaos via torus destruction
in models of dengue fever and predator-prey systems,

implications for data analysis
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Explicit multi-strain models:

example: dengue fever

simplest example: two-strain SIR model

including antibody dependent enhancement (ADE)

=> chaos only for large ADE parameter ¢

biologically motivated extension

including temporary cross immunity

—> chaos for much wider ¢—region

(also for “inverse ADE”)



Explicit multi-strain models:

example: dengue fever

simplest example: two-strain SIR model

including antibody dependent enhancement (ADE)

=> chaos only for large ADE parameter ¢

biologically motivated extension

including temporary cross immunity

—> chaos for much wider ¢—region

(also for “inverse ADE”)

via Hopf, torus bifurcations and torus destruction



Antibody dependent enhancement, ADE

Immune response to dengue infection
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Transition rates for two-strain SIR model
with ADE and temporary cross immunity

S+ I i I + 1

S + I i I + I

S1+ Iig — T2+ Iq2



Transition rates for two-strain SIR model
with ADE and temporary cross immunity

S+ I ﬂ) I + 1

S + I gl I + I

S1+ Iig — T2+ Iq2



Transition rates for two-strain SIR model
with ADE and temporary cross immunity
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Multi-strain model for dengue fever
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Bifurcations for changing ¢
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Dengue: Bifurcation diagram

bifurcation diagram for o = 2

L] 1 L] L]
i.e. ; year of temporary cross-immunity



Fixed point stability analysis generalized

small deviations Az := x(t) — ™ now from any attrac-
tor trajectory x*(t)
d d d d
—z(t) = —(z* + Az) = —z" + —A
a" M = @ T AD) =gt AL
= f(z) = f(z" + Az)
and using Taylor’s expansion
* sk df 2
f(z™ + Az) = f(z7) + —= - Az + O((Az)”)
A2 | p=g(t)
gives (with %g* = f(x*)) now along the attractor

trajectory x*(t)
df

d
dt dx

- Ax

x=x*(t) B




Stability around a limit cycle
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Stability around a limit cycle
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X

now stability determined around limit cycle x*(t)

i

dg Q*

by Jacobi matrix A :



Stability around a limit cycle

-0.1

-0.2

-0.3
-03 0.2 -01 O 1 02 03 04 05

Lyapunov exponents



Lyapunov exponents

characterize deteministic attractors

all Lyapunov exponents smaller zero, A; < 0

—> fixed point

largest Lyapunov exponent equal zero, Ay = 0

—=> limit cycle

largest Lyapunov exponent larger zero, A1 > 0

—> chaotic attractor



Quantifying chaos, example Lorenz attractor

E.N. Lorenz (1963)
Deterministic non-periodic flow, J. Atmos. Sci. 20, 130-141.



Lorenz attractor
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Lyapunov exponents:

A1 = 0.9056

Ay =0

A3 = —14.5723

measured here (t=50):

A1 = 0.93

A2 = —0.028 (=200, -0.0029)

—14.74



Dengue chaos
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Lyapunov exponents along dengue attractor
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Dengue: Lyapunov spectrum

4 largest Lyapunov exponents for a« = 2 (5000 years trajectory)



Lyapunov spectrum versus bifurcation diagram




Bifurcation analysis via continuation: AUTO




Bifurcation analysis via continuation: AUTO

Comparing AUTO, Lyapunov spectra and

numerical bifurcation diagrams:



Dengue data from Thailand, updated till end of 2013

34 years of symptomatic dengue cases for all 77 provinces
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t

monthly symptomatic dengue cases
in Chiang Mai 1980-2014
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Dengue data from Thailand, updated till end of 2013

34 years of symptomatic dengue cases for all 77 provinces
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Modelling multi-strain dynamics

gives time series comparable to data
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Data matching:

compare simulations with data

stochastic model
empirical data
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Iterated Filtering
algorithmic description after Breto et al. 2009:

MODEL INPUT: f()a g('l')’ Y1y s YNy Loy s tN

ALGORITHMIC PARAMETERS: integers J, L, M; scalars 0 < a < 1, b > 0; vectors X\ , §(1);
positive definite symmetric matrices Xy ,3g.

1. FORm =1to M

2. Xi(to,j) ~ NIX{™,a™ 18], j=1,..,J

3. Xr(to,J) = X1(to,7)

4. 0(tg,7) ~ N[0™, ba™ 1]

5. O(tg) = 6™

6. FORn=1toN

7. Xp(tn, .7) - f(XF(tn—l’ .7)7 tn—1,1n, e(tn—l’ J)a W)

8. w(n,j) = g(Yn|XpP(tn, J)s tn, 0(tn-1,5))

9. draw ki, ..., kjy such that Prob(k; = i) = w(n,%)/ Zw(n,ﬁ)

£
10. XFr(tn,7) = Xp(tn, kj)
11. X1(tn,J) = X1(tn—1,k;)
12. O(tn,3) ~ N[O(tn—1,ki)sa™  (tn — tn—1)Ze]
13. Set 0;(t,) to be the sample mean of {0;(tn—1,k;), j =1,...,J}
14. Set V;(t,) to be the sample variance of {0;(tn,j), j=1,...,J}
15. END FOR
N
16. 6D = 0{™ + Vi(t1) YV (tn) (Bi(tn) — Bi(tn—1))
n=1
17. Set X}m-'_l) to be the sample mean of {X(tr,j5), 7=1,...,J}
18. END FOR
RETURN
maximum likelihood estimate for parameters, § = §(M+1)

maximum likelihood estimate for initial values, X () = X}M+1)

maximized conditional log likelihood estimates, £,,(0) = log(>_; w(n,j)/J)
maximized log likelihood estimate, £(0) = 3", £,(9)



Short term predictability,
long term unpredictability
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So what is needed?

toy models

with torus bifurcation

stochastic version

chaos after torus bifurcation
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regions. When this curve is crossed from below, the ced stable cycle of
period 1 smoothly bifurcates into a stable quasi-periodic solution. While
continuing curve b'" from the left to the right the multipliers /=
Poincaré map vary and become equal to — 1 when the terminal p
reached.

FARAME | LR

=1
=3
=
i
&
w
o
w
2
=
E
w
=)
Ed
o
H
Ed

CEGREF OF SEASONALITY

lilative bifurcation diagram for
are bilurcalion curves. Poiats
bifurcation

Point A is a codimension two bifurcation point, called stron,
studied in Arnold (1982 by means of the normal form
coefficients of the normal form are of opposite sign and this su
only two bifurcation curves, namely, a Hopl 4" and a flip;
point A (as alrcad: the branch of £ not involving attractors is not shown
in the figure). Curve /' can be generated by the conlinuvation technique
starting from point 4. Along curve £V the notmal form coefficient {computed
as in Kuznetsov and Rinaldi, 1991) varies and becomes equal 1o 0 al point B,
which is therefore a codimension two bifurcation point. Thus, curve f™' is
divided into two segments [4 8 and BE) and the period doubling takes place in
oppasite directions on these (wo segments, namely from region 4 on segment

B and from region I on segmen! BE. More precisely, when curve (1 is
crossed from region 1 to region 4 the forced > of period 11o bility and
smeothly bifurcates indo a stable peried 2 cycle. On the condrary. if /' 13
crossed from region 3 Lo region 4, the stable cycle of period 1 collides with a
saddle cyele of period 2 and becom. saddle cycle of period 1.

The codimension two bifurcation point B is the terminal point of one of the




Rosenzweig-MacArthur model

with Holling type II response function

preys X and predators Y governed by ODE-system
. X X
jK:QX(L——)—k Y

Y = v Y —uY

with Holling type II response function

X

p(X) :=
EN + X

instead of ¢(X) = X as in Lotka-Volterra systems



Extended system with searching and handling predators

and time scale separation => RM-H

preys X, searching predators Ys and handling preda-
tors Y},
S+ X — X+ X

X — S

Y, — Y

Y, — Y+ Y,

Y. — 0

Y, —

with predators X occupying space (or resources) S
with birth rate 8 and giving space (resources) free
with death rate o, hence growth rate p := 8 — o and
carrying capacity k := N(1 — a/3)



Extended system with searching and handling predators

and time scale separation => RM-H

preys X, searching predators Ys and handling preda-
tors Y},
S+ X — X+ X

X — S

Y, — Y

Y, — Y+ Y,

Y. — 0

Y, —

with predators X occupying space (or resources) S
with birth rate 8 and giving space (resources) free
with death rate o, hence growth rate p := 8 — o and
carrying capacity k := N(1 — a/3)

gives stochastic version of RM-H



Mean field approximation of

extended system

preys X, handling predators Y3 and searching preda-
tors Y

. B b
X = —X(N-X)—aX — —XY,
N N

. b
Y, = — XY, — kY, — unYy;
h N h — HXh

Y,

b
_NXY; + kYn — puYs +vYy

and time scale separation via rescaled variables

A A

k:=ck and b:=¢€b

gives sub-system of handlers and searchers in station-
arity

A

b .
0 = —XY;, — kY,
Y

b X
0 = ——XY. + kY,
N + kY



Mean field approximation of

extended system

subsystem in equlibrium gives with total predators
Y =Y, + Y, hence Y;, =Y — Y etc. the solutions

kY  ekY kY
° ]%4_%)( sk—i—%bX k—l—%X
Y Y Y
Y, = X< = X =X
and with

d d
EY = E(Ys +Y,) = —pYs+Y,) +vY, = —pY +vX

EN + X

the Rosenzweig-MacArthur type model with Holling
type 1I response function back

. X X
X = o0X [1—— —kk Y
K EN—l—X

. X
Y:—,uY—I—I/k Y
EN—I—X




Limit cycle with trajectory from initial condition

spiraling into it

50

0
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X(t)

deterministic mean field ODE system (blue)
with Hopf bif. point by = kL YTE

KV—U




Corresponding stochastic process

of extended system

with variables X, Y := Y}, + Ys and Z := Ys; we have

¢ (X,Y, Z,t) =
dtp 9 9 9 N

%(N — (X —-1)(X -1 p(X—-1Y,2,1)
+a(X +1) p(X +1),Y,2,¢)

—I—%(X +1)(Z+1)p(X+1,Y,Z+1,¢)
+k(Y —Z+4+1) p(X,Y,Z — 1,1)

+v(Y —Z) p(X,Y —1,Z — 1,1)

Fu(Z 1) p(X,Y +1,Z + 1,1)
+u(Y —Z+1) p(X,Y + 1, Z,¢)

3 b
— (N(N ~ X)X +oX + - XZ + k(Y - 2)

‘I‘V(Y_ Z) ‘|‘.UJZ‘|‘.U’(Y_ Z)) p(X,Y,Z,t)



Comparison of deterministic and stochastic systems

both with spiraling into Hopf limit cycle
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deterministic mean field ODE system (blue)



Comparison of deterministic and stochastic systems

both with spiraling into Hopf limit cycle

10000 20000 30000 40000 50000
X()

deterministic mean field ODE system (blue)
and stochastic system, master equation realization (red)



Stochastic simulations for varying population sizes NV

10000 20000 30000 40000 0 100000 200000 300000 400000 500000
X(t) X(t)

population sizes of N = 100 000 and N = 10°



From master equation to Fokker-Planck equation

via Kramers-Moyal expansion

with densities  := X/N, y := Y/N and z := Z/N
we have the master equation

vt = N0 (o= 5) (1= (= ) (o= pownt)
dtp w’y7z7 - L N &L N p L N’y,z,
1 1
+ N« (w—kN) p(m—i—ﬁ,y,z,t)

— (NBx(1 —x) + Nax + ...) p(x,y, z,t)

and with = := (z,y, 2)!" as state vector and for the
n = 7 transitions w;(z) and vectors of small changes

Az, = % - 7, here with r; = (—1,0,0)", ry =
(1,0,0)!" ... we have the general form

n

%p(g, t) _ Z (ng(g + A%’) . p(& -+ Agj,t) — N’w](ﬂ) . p(% t))

in Taylor’s expansion ~ )
wj(z 4+ Az;) - p(z + Az, t) = Y — (Azj : Vg) wj(z) p(z,t)

V:0 V.



From master equation to Fokker-Planck equation

via Kramers-Moyal expansion

giving to second order in 1/N a Fokker-Planck equa-

tion
8 n
Y p(z,t) = —V, ( . 1(_£j - wj(z)) p(z, t))
i
0‘2 ° 2
_|_? Z(Ej - Vi) wj(z) p(z,t)
=1l
with
8
a
Gl
Ve=| 3 | =0
x ('961/ —

or in different notation
2

% p(z,t) = —0: (i(z) p(z, t)) + % 0, (Gz(g) p(z, t)) 8,



From master equation to Fokker-Planck equation

via Kramers-Moyal expansion

In new notation

%p(m t) = —8; (i@) p(z, t)) % ) (Gz@) p(z, t)) )

using simply a quadratic form 9, (G*(z) p(z,t)) O
here with
(o)
ox

. . o 6 O gi1 gi2 gis ’ .
O (G2 p) 0= <8 ' 90’ ) . g21 g22 g23 p(x,t) - ai
wok e gs31 g32 gss Y
2
and " \ 9z )
flz) =) f(x)= Z( r; - w;(z))
j=1

G'(z) = ) Gi(@) =) r;-rj w(z)



From master equation to Fokker-Planck equation

via Kramers-Moyal expansion

Fokker-Planck equation
) -

o p(@t) = =0, (i(@) p(z, t)) + %2 B (Gz(g) p(z, t)) 2

gives stochastic differential equation system with o =
1//N and in the XY Z case the three dimensional

Gaussian normal noise vector e(t) = (ex(t), ey(t), e (t))t"
as

d
= f(z) + oG(z) - ()

and using matrix square root from eigenvalue-eigenvector
decomposition G?(z) = TAT ! as

G(z) = TVAT?

to be numerically implemented easily



Comparison of master equation and Fokker-Planck approx.

spiraling into fixed point
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mean field ODE system (blue)



Comparison of master equation and Fokker-Planck approx.

spiraling into fixed point

0 10000 20000 30000 40000 50000
X(t)

mean field ODE system (blue)
master equation realization (red)



Comparison of master equation and Fokker-Planck approx.

spiraling into fixed point

0 10000 20000 30000 40000 50000
X(t)

mean field ODE system (blue)

master equation realization (red)
SDE system from Fokker-Planck approx. (pink)



Time series keep oscillating

time series of X (t) and Y ()



Including seasonal forcing makes the non-forced

Hopf to a torus bifurcation

8000 12000 16000 20000 24000 28000 32000
X(t)

torus in seasonally forced model



Rinaldi, Muratori, Kuznetsov 1993
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regions. When this curve is crossed from below, the ced stable cycle of
period 1 smoothly bifurcates into a stable quasi-periodic solution. While
continuing curve b'" from the left to the right the multipliers /=
Poincaré map vary and become equal to — 1 when the terminal p
reached.

FARAME | LR

=1
=3
=
i
&
w
o
w
2
=
E
w
=)
Ed
o
H
Ed

CEGREF OF SEASONALITY

lilative bifurcation diagram for
are bilurcalion curves. Poiats
bifurcation

Point A is a codimension two bifurcation point, called stron,
studied in Arnold (1982 by means of the normal form
coefficients of the normal form are of opposite sign and this su
only two bifurcation curves, namely, a Hopl 4" and a flip;
point A (as alrcad: the branch of £ not involving attractors is not shown
in the figure). Curve /' can be generated by the conlinuvation technique
starting from point 4. Along curve £V the notmal form coefficient {computed
as in Kuznetsov and Rinaldi, 1991) varies and becomes equal 1o 0 al point B,
which is therefore a codimension two bifurcation point. Thus, curve f™' is
divided into two segments [4 8 and BE) and the period doubling takes place in
oppasite directions on these (wo segments, namely from region 4 on segment

B and from region I on segmen! BE. More precisely, when curve (1 is
crossed from region 1 to region 4 the forced > of period 11o bility and
smeothly bifurcates indo a stable peried 2 cycle. On the condrary. if /' 13
crossed from region 3 Lo region 4, the stable cycle of period 1 collides with a
saddle cyele of period 2 and becom. saddle cycle of period 1.

The codimension two bifurcation point B is the terminal point of one of the




Lyapunov spectrum for unforced system

Rosenzweig-MacA. unforced, Lyaps. reveal bifs.



Seasonally forced Rosenzweig-MacArthur system:

forced predator birth system

Rosenzweig-MacArthur system with v(t)

X = oX (1-%) = 10.9) 4
V = —uY +u(t) - 9(X)Y
being
v(t) =vp- (1 4+ n-cos(wt))

gives 2-dim Jacobian matrix around trajectory for Lya-
punov exponent calculation

y (.Q (1 —2%) — k' (X)Y  —kp(X) )
v(t)e'(X)Y —p +v(t)e(X)



Seasonally forced Rosenzweig-MacArthur system:

autonomous system via Hopf oscillator

Rosenzweig-MacArthur system with v(t)

: X
X = oX (1——) — k- p(X)Y
K
Y = —puY + (1 + ) - p(X)Y
b= —wy+c- e — (2 + %))
gy = wz+c-y(n’ — (z* + %))

with solution of the Hopf oscillator to force R-MacA
system

x(t) =n-cos(w-t)

gives 4-dim Jacobian matrix around trajectory for Lya-
punov exponent calculation

0 (1 - 2%) — k! (X)Y —kp(X) 0 0
Bo| wl+2)-¢(X)Y —pt+wd+z)-eX) Vo (X)Y 0
0 0 c(n?® — (22 4+ y?)) — 2cx? —w — 2cxy

0 0 w — 2cxy c(n? — (22 + y?)) — 2cy?



Lyapunov spectrum for forced system

forcing via coupled Hopf-oscillator versus direct forcing
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regions. When this curve is crossed from below, the ced stable cycle of
period 1 smoothly bifurcates into a stable quasi-periodic solution. While
continuing curve b'" from the left to the right the multipliers /=
Poincaré map vary and become equal to — 1 when the terminal p
reached.
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CEGREF OF SEASONALITY

lilative bifurcation diagram for
are bilurcalion curves. Poiats
bifurcation

Point A is a codimension two bifurcation point, called stron,
studied in Arnold (1982 by means of the normal form
coefficients of the normal form are of opposite sign and this su
only two bifurcation curves, namely, a Hopl 4" and a flip;
point A (as alrcad: the branch of £ not involving attractors is not shown
in the figure). Curve /' can be generated by the conlinuvation technique
starting from point 4. Along curve £V the notmal form coefficient {computed
as in Kuznetsov and Rinaldi, 1991) varies and becomes equal 1o 0 al point B,
which is therefore a codimension two bifurcation point. Thus, curve f™' is
divided into two segments [4 8 and BE) and the period doubling takes place in
oppasite directions on these (wo segments, namely from region 4 on segment

B and from region I on segmen! BE. More precisely, when curve (1 is
crossed from region 1 to region 4 the forced > of period 11o bility and
smeothly bifurcates indo a stable peried 2 cycle. On the condrary. if /' 13
crossed from region 3 Lo region 4, the stable cycle of period 1 collides with a
saddle cyele of period 2 and becom. saddle cycle of period 1.

The codimension two bifurcation point B is the terminal point of one of the




Stollenwerk et al. 2016

Lyapunov dominant exponents, Yuri’s param.



Stollenwerk et al. 2016

zooming in reveals Arnol’d tongues, Yuri’s param.



First results with AUTO

bifurcation continuation compares well
with Lyapunov analysis



Stollenwerk et al. 2016

works also with time scale separable param. (stoch. version)



Further discussions and future work

discussion: Is the prey dynamics really just logistic
growth?

Does it matter in understanding ecological systems?
Data!

ecological data classically: Hudson Bay Company data
on hares and lynx

problems in understanding the data: Do hares eat
lynx?”



Further discussions and future work

problems in understanding the Hudson Bay data: ”Do
hares eat lynx?”

Are super-predators (with predator preference) im-
portant?

. more important than time scales in preys?



Data from the Hudson Bay Company on

on furs of hares and lynx

1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940
t

data on hares (black) and lynx (red) in thousands
from 1845 to 1935 yearly



Model Comparison

Consider, for a given data set I, two models: My with
parameter 3 and Mo with parameter A
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Model Comparison

Consider, for a given data set I, two models: My with
parameter 3 and Mo with parameter A

(L] M)
p(MiI) _ Ty - P(My)  p(I|My) p(Mh)

p(M-|I) B 1% - p(M->) B p(I|M;) p(Ms>)

Assuming p(M7) = p(M>2) = % we obtain the Bayes
factor k via

p(My|I) _ p(I|M;) _

p(M|I)  p(I|Mz)
and with p(l|Ml) = fp(l|/39 Ml)p(/Bv Ml) d/B
I‘(al —|— bl) . I‘(al —|— kz)r(bl —|— kg)
I‘(al)I‘(az) I‘(a,l -+ kiz -+ b1 -+ k3)
and p(llMZ) .= fp(ll}‘a MZ)p(}‘a MZ) dA

ng . F(az —I— I{iz)

[(az) (by + m)eth

p(L|M;) = k; -

P(1|Mz) = ks -



Model Comparison

we get for Bayes factor k

_ ki -T(a1 + b)) -T(ay + k2) - T'(by + k3) - T'(az) - (by + n)®=2t*

ks -T(ay) -T'(by) -T'(ar + k2 + by + k3) - T(az + k) - b3

where

n—1 n—1
N —1,
ki := (H (Iu—l—l _I )) ko 1= E_O(IVH —1,)




Numerical examples

/3 p— ]_,O /B — ]_.O
k = 0.957514 k = 1.394059



Numerical examples

/3 p— 2,0 /B — 2.0
k = 0.650476 k = 83.234998



Numerical examples

/3 — 3,0 /B — 3.0
k = 3343.696 k = 10941.218



Bayes factor for many realizations

over changing parameter

many realizations show more evidence for simplistic model
than for the underlying model

(lines for In(1), no evidence, and In(10),
”strong evidence” for more complex model)



Application to systems without anlytic solutions:
Comparison of data with simulations

0

0 10 20 30 40 50 60 70 0O 20 30 40 50 60 70

t t

flu data cumulative simulations of
SIR-system

number of simulations in 7-ball vicinity to data set gives likeli-
hood of data under this model parameter set
=>  estimate of likelihood function (Stollenwerk, Briggs 2000)



Comparison of data with simulations

r
likelihood curves for the one parameter r for
The maximum does not
g that the estimate for the

mates of the parameters used for our likelihood
are obtained with this method.
l'n»m the Padé approxi
0! ]ll\tllhnﬂd sections we c

to all other model parameters, which is rather cum-
bersome for the Empirical Likelihood Method due to
the fluctuations around the empirical likelihood max-
imum (see Fig. 4). In biological systems one often
information about some of the model parameters
from other experiments and searches for an othel
wise difficult obtainable parameter like the contact
rate, which is r in our case. In such situations the
Empirical Likelihood Method is easiest and best
Jppluahle However, we have also investigated em-
cal likelihoods with variation of two parameters

[11]

8. Summary and prospect

We have solved the Master equation for a plant
disease model analytically and also obtained numer

ly stable solutions over the whole range of state:
which was previously not possible using the matr
exponential.

Physics Letters A 274 (2000) 84-91

The solution is used for constructing likelihood
sections from empi microcosm data. The Master
equation approach can be easily generalized to more
complex models, allowing for likelihood estimations
on the basis of simulated trajectories. Further re
search this Empirical Likelihood Method is
prog;

The form of the Master equation we use here
gives exponential waiting times between events and
in the Gillespie algorithm this property is used ex-
plicitly to construct stochastic realizations of the
process. However, the exponential waiting time is
not a principal restriction, but arbitrary waiting time
distributions can be included in a Master equation
with time-convolution [13,14]. It would be an intes
esting extension of the present work to combine
numerically this ti y ster equation

experimental system more appropt
periments by Bailey et al. indicate [22 ]) The time
decaying susceptibilit

threshold region between a simple spreading regime
and a non-spre
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lihood sections for all three parameters, i.c.
obtained from the likelihood maximization. The c:

using the B-recursion, i.e. using Eq. (14). We ob-
tained in this way the same value for L from both
methods. Only the machine precision prevented us-
ing the B-recursion for higher values of k.

7. Empirical likelihood

The above mentioned solution cannot be carried
through o more general Master equations, which
have different time-dependent transition rates for
different transitions as likely in multicompartmental
models, for example models with an additional ex-

/ Physics Letters A 274 (2000) 84-91

0.01 0.02 0.03 004 005 0.06

q

holds for time-dependent multicompartment models
and even can be used for constructing empi

ined likelihoods. We experiment with such
method by estimating the joint probability of
data, that is, Eq. (12), directly from simulated
stochastic trajectories. In the space of dimensionality
of the number of data points the estimate is
using balls around the measured data with
(n-balls) and counting the number of simulated tr

jectories inside these neighborhoods (for details see a

forthcoming article by Stollenwerk [11]). The esti-

estimate of likelihood function (Stollenwerk, Briggs 2000)



n-ball method:
estimation of p(Iy, Ia,...|3)

data vector I := (I, I, ...)
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n-ball method:

B)

estimation of p(Iy, Ia, ...

varying 3 gives estimated likelihood function

1 12141618 2 2224 26 28 3

§




n-ball method:
estimation of p(Iy, Ia,...|3)

data vector I := (I, I, ...)
compared with simulations I for 3-values



n-ball method:
estimation of p(Iy, Ia,...|3)

data vector I := (I, I, ...)
compared with simulations I for 3-values



Computer practical in Biomaths-Lecture 2014:

data from SIS system in 7p-ball method

1 121416 18 2 22 24 26 28 3

B

histogram of p(||Lsjm .k — Ldatall < 1(06)
for various n-values



n-ball method for Dutch influenza data

daily influenza data between 1st of January and 15th of April
2007 for the Netherlands (from InfluenzaNet, EPIWORK project)

to be compared with SIR stochastic simulations for various
parameter values



Estimated likelihood function

int

hood per data po

Likeli



Estimated likelihood function

Likelihood profiles versus likelihood sections



Can we obtain Bayes factor from n-ball method 777

Test example:
Linear infection model versus Poisson model

/B p— 2,0 /B — 2.0
k = 0.650476 k = 83.234998



For Bayes factor k& we need

1)

p(Mi|I) = [ p(Mjy,B|I) dB
hence simulate k trajectories with 3-values drawn from
a prior p(3) (can be just the uniform distribution be-
tween a (G,,;, and a Bmax)

and count the number of times the simulations are at
the data I (or m-near) irrespectively which 3-value is

used gives

#1| M,
# M,y
using the intuitive notation of #M; = k as the num-

ber of simulations of model My and for the number of
hits of the data (or n-near) from runs of M as #1I|M;

. BUIIM,) — p(I|My) = / (118, My)p(B3) dB

2) respectively
p(Mz|I) = [ p(Mz, A|I) dX



For Bayes factor k& we need

_ pP(MLI) _ p(I|M) p(Mh)
p(M|I)  p(I|Mz) p(Ms,)

=1

hence from the simulations we obtain

(#ﬂMl)
_pIMy)  \sn ) #IIM,
" o(I|M,) #I|M2\ 4 I|M

using the the same number of realizations from model
M1 and model Mo with parameters each drawn from
suitable priors counting the hits of the data I (or 7n-

near) resulting simply in

#L| M,

k =
#L| M




Numerical results

data (from linear infection model M; and 8 = 2.0)

and model simulations from M7 and M5. the Poisson
model

n-ball method internal parameters
n=15 , k= 10000

with Kk = #M = # Mo as the number of simulations
of model My respectively Mo gives Bayes factor
#I|M;, 1327

k = — " —0.8823
#I|M, 1504

compared to analytical value of kK = 0.650476



Reduce 1 — 0 to improve

with n-ball method internal parameters
n=15 , &= 10000

we had Bayes factor

I|M, 1327
AL My 1327 0.8823

k= —
#I|M, 1504

compared to analytical value of kK = 0.650476

now with reduced 7n-ball size
n=5 , =10000

we obtain Bayes factor

) I|M; 101
k= #I| My 101 0.5
#I|M, 202

in better agreement with the analytical k = 0.650476




Prediction into future based on data (Ig, I, ...I)



Prediction into future based on data (Ig, I, ...I)

joint probability of data points gives likelihood e.g. for
the linear infection model L(3)

n—1

p(Ina tna In—la tn—la see Ila tla IO? t0|16) — H p(Il/—l—la tV—|—1|II/9 tua /8) ’ p(107 tO)

vr=0

= L(B)

and transition probability now into the future ¢t >
tn = tmaxr knowing I,, at t,, was already calculated
previously :-)

— N—-1I I-I,
p(I, t|In7 tn, 6) — (ZET_ IIn) (e_ﬁ(t_t")) (1 — e—ﬁ(t—tn))

is a function of the estimated model parameter 3

p(Ia t|In7 tn, /3) — p(Ia t|In9 tn, /é)

with maximum likelihood estimate B or any best value
from the Bayesian posterior p(3|I), maximum, median
etc., inserted



Prediction into future based on data (Ig, I, ...I)

then best prediction fn+1 for next time step t,11
given by maximum of p(In41,tn+1|In, tn, 3)

o0 .
In p(In—|—19 tn+1|In7 tna /6) =0
aIn_|_1 jn+1
using ! = I'(x + 1) or for large values Stirling’s for-

mula z! =~ e® () and for quantifying the insecurity
of this prediction use

p(In—|—17 tn-|—1|In9 tna B)

but:

Where is the insecurity

of the underlying previous data (Ig, I1,...In,) 777



Prediction into future based on data (Ig, I, ...I)

from the prediction probability p(I,+1,tn+1|In, tn, ,é)
and the Bayesian posterior p(3|I)

p(5|l) — p(/BlIlv 127 seey In)
we can construct a joint probability as the product

p(In—i—la tn—|—1|In7 tn’ /5) ‘ p(ﬁll) — p(In—i—la tn—l—la /6|l)

and integrate over the model parameter 3 to obtain
the prediction based on the underlying data only (and
including the parameter insecurity naturally)

oo

P(Lny1s tna|l) = /p(In+17 tnt1lIn, tn, B) - p(B|I) dB
0

and only in the limiting case of exactly known param-
eter p(B3|I) := 6(B — B) we obtain the previous result

P(Int1,tnt1ll, B)



Prediction into future based on data (Ig, I, ...I)

prediction probability p(I,+1,tn+1|L) for the linear
infection model (including parameter insecurity)

oo

p(In—Ha |l) — /p(In—l—la tn—|—1|In9 tn,,B) ’ p(ﬁll) dﬁ
0

s ( N—In )B(a—l_In—l—l_ n+k27b+N_In—|—1+k3)
-\ Ty — I, B(a + k2, b + k3)

again in terms of the beta-function, still depending
on prior parameters but not explicitly on model pa-

rameter (3, with ko := Z:};&(IV—H — I,) and k3 :=
ZZ;&(N — I,,+1) only being data dependent

expected to have wide distribution in case of few data



Prediction into future based on data (Ig, I, ...I)

prediction probability p(I,4+1,tn+1|L) for the linear
infection model (including parameter insecurity)

p(Ins, |I) = / (i1t | Lns tns B) - p(BII) d3
0

e ( N—In )B(a+In+1_In—|—k27b—|—N— n—|—1+k3)
- A\ dp1 — I, B(a + ks, b + k3)

60 65 70 75 80 8 90 95
0 02 04 06 08 1 12 14 It

t

dynamics after data prediction



Difference between p(I,,1|3) and p(I,,41|I)

more pronounced in non-analytical models (e.g. SIS)



Computer practical in Biomaths-Lecture 2014:

data from SIS system in 7p-ball method

1 121416 18 2 22 24 26 28 3

B

histogram of p(||Lsjm .k — Ldatall < 1(06)
for various n-values



Parameter estimation with SIS under n-ball:
extended to prediction for I, at time ¢,
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Parameter estimation with SIS under n-ball:
extended to prediction for I, at time ¢,
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prediction prediction

from various (3 from estimate (3



