Harmless maturation delay in prey-predator type interactions

Malay Banerjee¹ & Yasuhiro Takeuchi²

¹Indian Institute of Technology Kanpur, Kanpur, India E-mail: malayb@iitk.ac.in ²Aoyama Gakuin University, Kanagawa, Japan E-mail: takeuchi@gem.aoyama.ac.jp

> DSABNS - 2017 Evora, Portugal 31st Jan - 3rd Feb, 2017

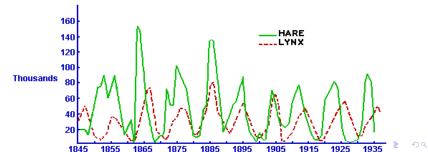
> > <ロト (四) (三) (三) (三)

æ

Model with Allee effec

EFFECT OF MATURATION DELAY

Lynx-Hare Data Example of prey-predator interaction



Basic prey-predator models Rosenzweig-MacArthur model

RM model

$$\frac{dx}{dt} = x(1-x) - \frac{xy}{a+x} \equiv F(x,y)$$
$$\frac{dy}{dt} = \frac{bxy}{a+x} - cy \equiv G(x,y)$$

Preliminary results

(i) Positivity and boundedness of solutions;

(ii) Determination of equilibria and their stability;

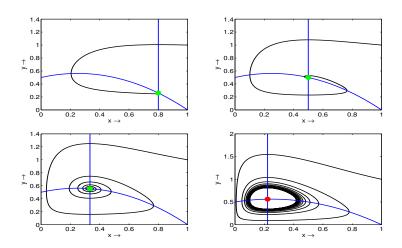
- (iii) Stability and LOCAL bifurcation analysis;
- (iv) Global stability;

うせん 川田 ふぼや 小田 そうそう

Model with Allee effect

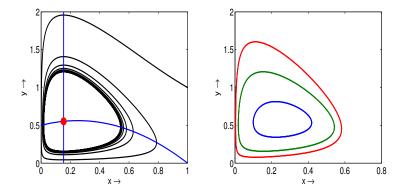
EFFECT OF MATURATION DELAY

Basic prey-predator models Rosenzweig-MacArthur model



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Basic prey-predator models Attractors and the risk of extinction in RM model



Prey population can go to extinct which in turn drives the predators to extinction.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへぐ

Model with Allee effec

EFFECT OF MATURATION DELAY

Basic prey-predator models Prey and their predators

Vole, Snowshoe Hare, Lemmings and their predators

Basic prey-predator models Gause type Models

Gause type model

$$\frac{du}{dt} = uf(u) - p(u)v, \quad \frac{dv}{dt} = ep(u)v - q(v)v$$
$$\frac{du}{dt} = uf(u) - p(u,v)v, \quad \frac{dv}{dt} = ep(u,v)v - q(v)v$$

Variables, parameter and functions

- u, v
 ightarrow prey, predator population
- $t \rightarrow time$
- f(u)
 ightarrow per capita prey growth rate
- $p(u) \rightarrow$ prey-dependent functional response
- $p(u,v) \rightarrow$ prey and predator-dependent functional response
- q(v)
 ightarrow per capita predator death rate
- $e \rightarrow$ conversion efficiency

Basic prey-predator models

Growth functions

• $f(u) = (1-u) \rightarrow$ Logistic growth

Functional responses

•
$$p(u) = \frac{u}{\beta + u} \rightarrow$$
 Holling type II
• $p(u) = \frac{u^2}{\xi + u^2} \rightarrow$ Holling type III
• $p(u) = \frac{u}{\eta + u^2} \rightarrow$ Monode-Haldane
• $p(u, v) = \frac{u}{u + v} \rightarrow$ ratio-dependent
• $p(u, v) = \frac{u}{\beta + u + v} \rightarrow$ Beddington-DeAngelis

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

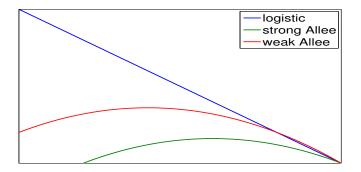
Model with Allee effec

EFFECT OF MATURATION DELAY

Basic prey-predator models Species showing Allee effect

Bluefin Tuna, Kakapo bird, fruit flies, African wild dogs

Basic prey-predator models Per capita prey growth functions



 $egin{aligned} f(u) &= (1-u)(u-\eta), \ 0 &< \eta < 1 o ext{strong Allee effect} \ -1 &< \eta < 0 o ext{weak Allee effect} \end{aligned}$

Delayed models Existing Models

Math. Model. Nat. Phenom. Vol. 4, No. 2, 2009, pp. 140-188 DOI: 10.1051/mmnp/20094207

On Nonlinear Dynamics of Predator-Prey Models with Discrete Delay*

S. Ruan[†]

Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250, USA

Delayed model with Hutchinson type delay

$$\frac{du(t)}{dt} = u(t)(1-u(t-\tau)) - \frac{u(t)v(t)}{\beta+u(t)},$$

$$\frac{dv(t)}{dt} = \frac{\alpha u(t)v(t)}{\beta+u(t)} - \delta v(t)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Delayed models Existing Models

Bulletin of Mathematical Biology Vol. 45, No. 6, pp. 991-1004, 1983. Printed in Great Britain 0092-8240/83\$3.00 + 0.00 Pergamon Press Ltd. © 1983 Society for Mathematical Biology

THE TRADE-OFF BETWEEN MUTUAL INTERFERENCE AND TIME LAGS IN PREDATOR-PREY SYSTEMS[†]

 H. I. FREEDMAN and V. SREE HARI RAO^{*} Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Model with Gestation Delay

$$\frac{du(t)}{dt} = u(t)(1-u(t)) - \frac{u(t)v(t)}{\beta+u(t)},$$

$$\frac{dv(t)}{dt} = \frac{\alpha u(t-\tau)v(t)}{\beta+u(t-\tau)} - \delta v(t)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Delayed models Existing Models

TIME LAG IN PREY-PREDATOR POPULATION MODELS

PETER J. WANGERSKY AND W. J. CUNNINGHAM Osborn Zoological Laboratory and Dunham Laboratory of Electrical Engineering, Yale University, New Haven, Connecticut

Ecology, 38, 136 - 139 (1957)

Delayed model with Wangersky-Cunningham formulation

$$\begin{aligned} \frac{du(t)}{dt} &= u(t)(1-u(t)) - \frac{u(t)v(t)}{\beta+u(t)}, \\ \frac{dv(t)}{dt} &= \frac{\alpha u(t-\tau)v(t-\tau)}{\beta+u(t-\tau)} - \delta v(t) \end{aligned}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

J. Math. Biol. 49, 188–200 (2004) Digital Object Identifier (DOI): 10.1007/s00285-004-0278-2 **Mathematical Biology**

Stephen A. Gourley · Yang Kuang

A stage structured predator-prey model and its dependence on maturation delay and death rate

Gourley-Kuang formulation

$$\begin{aligned} \frac{du(t)}{dt} &= u(t)f(u(t)) - p(u(t))v(t), \\ \frac{dv(t)}{dt} &= e^{-\delta_j\tau}p(u(t-\tau))v(t-\tau) - \delta v(t) \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Delayed models Model with maturation delay

Reported results

- Dealy induced destabilization
- Destabilization through Hopf-bifurcation
- Destabilization leading to complex/chaotic dynamics
- Stability of Hopf-bifurcating periodic solution
- Switching of stability

Interesting questions

Why, when and how destabilization takes place due to discrete time delay? Does discrete delay always destabilize the system?

Delayed models Targeted models

Model with logistic growth

$$\begin{aligned} \frac{du(t)}{dt} &= u(t)(1-u(t)) - p(u(t), v(t))v(t), \\ \frac{dv(t)}{dt} &= e^{-\delta_j \tau} p(u(t-\tau), v(t-\tau))v(t-\tau) - \delta v(t) \end{aligned}$$

Model with Allee effect in prey growth

$$\begin{aligned} \frac{du(t)}{dt} &= u(t)(1-u(t))(u(t)-\beta)-p(u(t),v(t))v(t),\\ \frac{dv(t)}{dt} &= e^{-\delta_j\tau}p(u(t-\tau),v(t-\tau))v(t-\tau)-\delta v(t) \end{aligned}$$

RM model with strong Allee effect

RM model with multiplicative Allee effect

$$\frac{dx}{dt} = x(1-x)(x-\beta) - \frac{xy}{x+\alpha} \frac{dy}{dt} = \frac{\gamma xy}{x+\alpha} - \delta y$$

$$\begin{array}{l} 0 \ < \ \beta \ < \ 1 \ \rightarrow \ {\rm strong} \ {\rm Allee} \ {\rm effect} \\ -1 \ < \ \beta \ < \ 0 \ \rightarrow \ {\rm weak} \ {\rm Allee} \ {\rm effect} \end{array}$$

Axial Equilibria

 $E_0(0,0) \rightarrow \text{always stable}$ $E_1(\beta,0) \rightarrow \text{saddle point if } \gamma < \delta(\alpha + \beta)/\beta \text{ and is unstable node}$ otherwise $E_2(1,0) \rightarrow \text{LAS for } \gamma < \delta(1 + \alpha), \text{ saddle point otherwise}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

RM model with strong Allee effect

Coexisting equilibrium E_*

$$x_* = rac{lpha \delta}{\gamma - \delta}, \ y_* = (1 - x_*)(x_* - eta)(x_* + lpha)$$

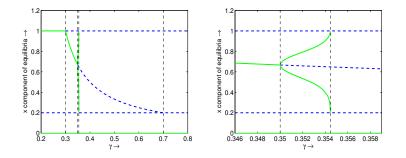
Stability and bifurcation of E_*

 E_* appears and disappears through transcritical bifurcations, TCB thresholds are $\gamma_{TC_1} \equiv \delta(1 + \alpha)$ and $\gamma_{TC_2} \equiv \delta(\alpha + \beta)/\beta$ respectively. E_* is LAS for $\gamma_{TC_1} < \gamma < \gamma_H$ where

$$\gamma_{H} = \delta + \frac{3\alpha\delta}{\beta - \alpha + 1 + \sqrt{(\alpha + \beta)^{2} + (\alpha + 1)(1 - \beta)}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

RM model with strong Allee effect



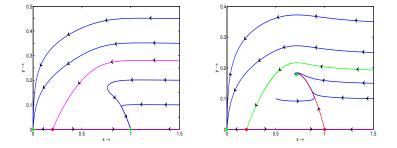
Bifurcation diagram for $\beta = 0.2$, $\alpha = 0.5$, $\delta = 0.2$ and with γ as bifurcation parameter.

Delayed mode

Model with Allee effect

EFFECT OF MATURATION DELAY

RM model with strong Allee effect



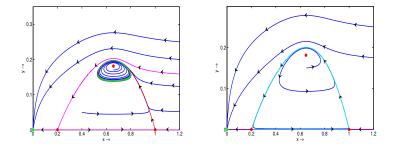
(Left) $\gamma = 0.29 < \gamma_{TC1}$, (Right) $\gamma_{TC1} < \gamma = 0.34 < \gamma_H$

Delayed mode

Model with Allee effect

EFFECT OF MATURATION DELAY

RM model with strong Allee effect



(Left) $\gamma_H < \gamma = 0.352 < \gamma_{HC}$, (Right) $\gamma = 0.3544596588 = \gamma_{HC}$

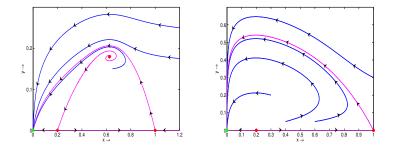
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Delayed mode

Model with Allee effect

EFFECT OF MATURATION DELAY

RM model with strong Allee effect



(Left) $\gamma_{HC} < \gamma = 0.36 < \gamma_{TC2}$, (Right) $\gamma_{TC_2} < \gamma = 0.71$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Models with Allee effects

Available online at www.sciencedirect.com

Mathematical **Biosciences**

Mathematical Biosciences 209 (2007) 451-469

www.elsevier.com/locate/mbs

Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect

George A.K. van Voorn ^{a.*}, Lia Hemerik ^b, Martin P. Boer ^b, Bob W. Kooi ^a

^a Department of Theoretical Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, de Boelelaan 1087, 1081 HV Amsterdam. The Netherlands

^b Wageningen University and Research Centre, Biometris, P.O. Box 100, 6700 AC Wageningen, The Netherlands

Received 5 October 2006; received in revised form 9 February 2007; accepted 19 February 2007 Available online 1 March 2007

Ecological Complexity 11 (2012) 12-27

Contents lists available at SciVerse ScienceDirect

Ecological Complexity

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

journal homepage: www.elsevier.com/locate/ecocom

Original research article

Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect

Moitri Sen^a, Malay Banerjee^a, Andrew Morozov^{b,c,*}

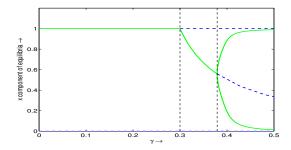
* Department of Mathematics and Statistics, J. J. T. Kanpur, India ^bDepartment of Mathematics. University of Leicester, UK

^c Shirshoy Institute of Oceanology, Moscow, Russia

RM model with weak Allee effect

Model with weak Allee effect
$$(-1 < eta < 0)$$

$$\frac{dx}{dt} = x(1-x)(x-\beta) - \frac{xy}{x+\alpha}$$
$$\frac{dy}{dt} = \frac{\gamma xy}{x+\alpha} - \delta y$$



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Effect of maturation delay Delayed RM model with Allee effect

Journal of Theoretical Biology 412 (2017) 154-171

Maturation delay for the predators can enhance stable coexistence for a class of prey–predator models

Malay Banerjee^{a,*}, Yasuhiro Takeuchi^b

^a Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, India

^b College of Science and Engineering, Aoyama Gakuin University, Kanagawa, Japan

Basic Model

$$\begin{aligned} \frac{dx(t)}{dt} &= x(t)(1-x(t))(x(t)-\beta) - \frac{x(t)y(t)}{x(t)+\alpha}, \\ \frac{dy(t)}{dt} &= \frac{\gamma e^{-\delta_j \tau} x(t-\tau)y(t-\tau)}{x(t-\tau)+\alpha} - \delta y(t). \end{aligned}$$

Effect of maturation delay Delayed RM model with strong Allee effect

Model with Maturation Delay (0 < eta < 1)

$$\begin{aligned} \frac{dx(t)}{dt} &= x(t)(1-x(t))(x(t)-\beta) - \frac{x(t)y_a(t)}{x(t)+\alpha}, \\ \frac{dy_j(t)}{dt} &= \frac{\gamma x(t)y_a(t)}{x(t)+\alpha} - \frac{\gamma e^{-\delta_j \tau} x(t-\tau)y_a(t-\tau)}{x(t-\tau)+\alpha} - \delta_j y_j(t), \\ \frac{dy_a(t)}{dt} &= \frac{\gamma e^{-\delta_j \tau} x(t-\tau)y_a(t-\tau)}{x(t-\tau)+\alpha} - \delta y_a(t), \end{aligned}$$

Effect of maturation delay Delayed RM model with strong Allee effect

Model with Maturation Delay ($0 < \beta < 1$)

$$\begin{aligned} \frac{dx(t)}{dt} &= x(t)(1-x(t))(x(t)-\beta) - \frac{x(t)y_a(t)}{x(t)+\alpha}, \\ \frac{dy_j(t)}{dt} &= \frac{\gamma x(t)y_a(t)}{x(t)+\alpha} - \frac{\gamma e^{-\delta_j \tau} x(t-\tau)y_a(t-\tau)}{x(t-\tau)+\alpha} - \delta_j y_j(t), \\ \frac{dy_a(t)}{dt} &= \frac{\gamma e^{-\delta_j \tau} x(t-\tau)y_a(t-\tau)}{x(t-\tau)+\alpha} - \delta y_a(t), \end{aligned}$$

Justification for $e^{-\delta_j \tau}$

$$\frac{dy_j(t)}{dt} = -\delta_j y_j$$

$$f_i(\tau) = e^{-\delta_j \tau} y_j(0)$$

▲□▶▲□♥▶▲□▶▲□▶ □ ⑦�(

Effect of maturation delay Delayed RM model with strong Allee effect

Simplication of the model (2nd equation)

$$\begin{aligned} \frac{d}{dt} \left(e^{\delta_j t} y_j(t) \right) &= e^{\delta_j t} \frac{\gamma x(t) y_a(t)}{\alpha + u(t)} - e^{\delta_j (t-\tau)} \frac{\gamma x(t-\tau) y_a(t-\tau)}{\alpha + x(t-\tau)} \\ y_j(t) &= \gamma \int_{-\tau}^0 e^{\delta_j s} \frac{x(s+t) y_a(s+t)}{\alpha + x(s+t)} ds \end{aligned}$$

Effect of maturation delay Delayed RM model with strong Allee effect

Simplication of the model (2nd equation)

$$\begin{aligned} \frac{d}{dt} \left(e^{\delta_j t} y_j(t) \right) &= e^{\delta_j t} \frac{\gamma x(t) y_a(t)}{\alpha + u(t)} - e^{\delta_j (t-\tau)} \frac{\gamma x(t-\tau) y_a(t-\tau)}{\alpha + x(t-\tau)} \\ y_j(t) &= \gamma \int_{-\tau}^0 e^{\delta_j s} \frac{x(s+t) y_a(s+t)}{\alpha + x(s+t)} ds \end{aligned}$$

Final model

$$\begin{aligned} \frac{dx(t)}{dt} &= x(t)(1-x(t))(x(t)-\beta) - \frac{x(t)y(t)}{x(t)+\alpha}, \\ \frac{dy(t)}{dt} &= \frac{\gamma e^{-\delta_j \tau} x(t-\tau)y(t-\tau)}{x(t-\tau)+\alpha} - \delta y(t). \end{aligned}$$

・ロト・西ト・山田・山田・山口・

Effect of maturation delay Delayed RM model with strong Allee effect

Simplication of the model (2nd equation)

$$\begin{aligned} \frac{d}{dt} \left(e^{\delta_j t} y_j(t) \right) &= e^{\delta_j t} \frac{\gamma x(t) y_a(t)}{\alpha + u(t)} - e^{\delta_j (t-\tau)} \frac{\gamma x(t-\tau) y_a(t-\tau)}{\alpha + x(t-\tau)} \\ y_j(t) &= \gamma \int_{-\tau}^0 e^{\delta_j s} \frac{x(s+t) y_a(s+t)}{\alpha + x(s+t)} ds \end{aligned}$$

Final model

$$\frac{dx(t)}{dt} = x(t)(1-x(t))(x(t)-\beta) - \frac{x(t)y(t)}{x(t)+\alpha},$$

$$\frac{dy(t)}{dt} = \frac{\gamma e^{-\delta_j \tau} x(t-\tau)y(t-\tau)}{x(t-\tau)+\alpha} - \delta y(t).$$

$$y_j(0) = \gamma \int_{-\tau}^0 e^{\delta_j s} y_a(s) p(x(s)) ds.$$

 $) \land \bigcirc$

Effect of maturation delay Delayed RM model with strong Allee effect

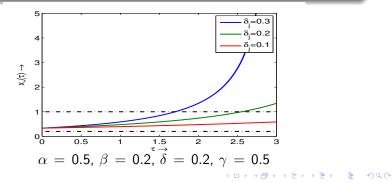
Coexisting equilibrium (0 < β < 1)

$$egin{aligned} x_*(au) &\equiv rac{lpha \delta}{\gamma e^{-\delta_j au} - \delta}, \ y_*(au) &= (1 - x_*(au))(x_*(au) - eta)(x_*(au) + lpha). \ &rac{\delta(lpha + 1)}{\gamma} \, < \, e^{-\delta_j au} \, < \, rac{\delta(lpha + eta)}{eta \gamma}. \end{aligned}$$

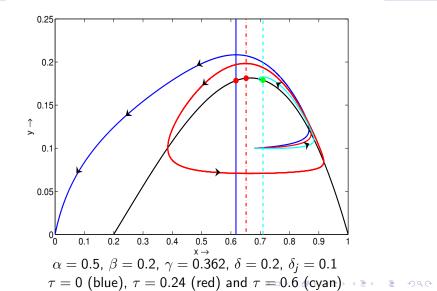
Effect of maturation delay Delayed RM model with strong Allee effect

Coexisting equilibrium $(0 < \beta < 1)$

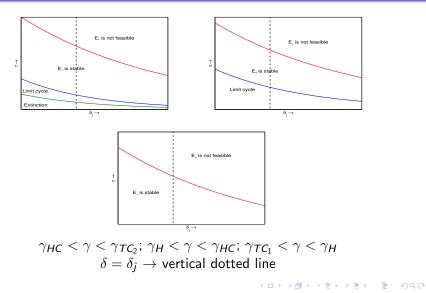
$$egin{aligned} x_*(au) &\equiv rac{lpha \delta}{\gamma e^{-\delta_j au} - \delta}, \ y_*(au) &= (1 - x_*(au))(x_*(au) - eta)(x_*(au) + lpha). \ &rac{\delta(lpha + 1)}{\gamma} \, < \, e^{-\delta_j au} \, < \, rac{\delta(lpha + eta)}{eta \gamma}. \end{aligned}$$



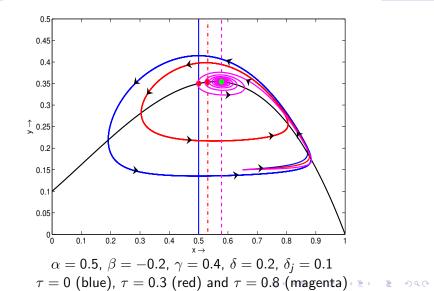
Effect of maturation delay Delayed RM model with strong Allee effect



Effect of maturation delay Delayed RM model with strong Allee effect

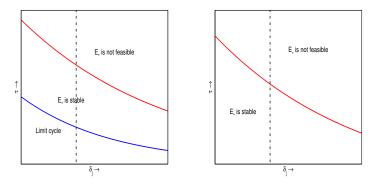


Effect of maturation delay Delayed RM model with weak Allee effect



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Effect of maturation delay Delayed RM model with weak Allee effect



 $\gamma_H < \gamma < \gamma_{HC}; \ \gamma_{TC_1} < \gamma < \gamma_H$ $\delta = \delta_i \rightarrow \text{vertical dotted line}$

Effect of maturation delay Model with ecological data- Lemming-Stoat interaction

Mathematical Biosciences 221 (2009) 1-10

The roles of predator maturation delay and functional response in determining the periodicity of predator–prey cycles

Hao Wang^{a,*}, John D. Nagy^{b,*}, Olivier Gilg^c, Yang Kuang^d

a Department of Mathematical and Statistical Sciences, University of Alberta, Canada

^b Department of Life Sciences, Scottsdale Community College, School of Life Sciences, Arizona State University, USA

^c Department of Biological and Environmental Sciences, University of Helsinki, Finland

^d Department of Mathematics and Statistics, Arizona State University, USA

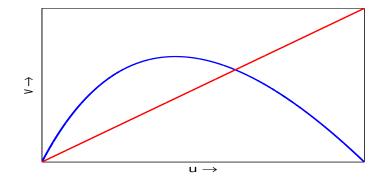
◆□ → ◆□ → ◆ □ → ◆ □ → □ □

Effect of maturation delay Ratio-dependent model with Allee effect

$$\frac{du}{dt} = u(1-u)(u-\beta) - \frac{\alpha uv}{u+v}, \quad \frac{dv}{dt} = \frac{\gamma uv}{u+v} - \delta v$$

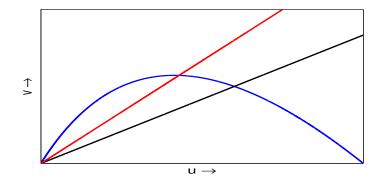
Effect of maturation delay Ratio-dependent model with Allee effect

$$\frac{du}{dt} = u(1-u)(u-\beta) - \frac{\alpha uv}{u+v}, \quad \frac{dv}{dt} = \frac{\gamma uv}{u+v} - \delta v$$



Effect of maturation delay Ratio-dependent model with Allee effect

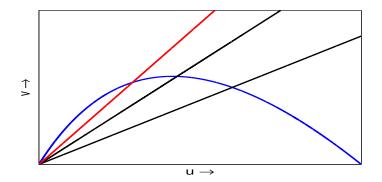
$$\frac{du}{dt} = u(1-u)(u-\beta) - \frac{\alpha uv}{u+v}, \quad \frac{dv}{dt} = \frac{\gamma uv}{u+v} - \delta v$$



・ロト ・四ト ・ヨト ・ヨト ・ヨ

Effect of maturation delay Ratio-dependent model with Allee effect

$$\frac{du}{dt} = u(1-u)(u-\beta) - \frac{\alpha uv}{u+v}, \quad \frac{dv}{dt} = \frac{\gamma uv}{u+v} - \delta v$$



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Effect of maturation delay Delayed ratio-dependent model with Allee effect

Model

$$\begin{aligned} \frac{du(t)}{dt} &= u(t)(1-u(t))(u(t)-\beta) - \frac{\alpha u(t)v(t)}{u(t)+v(t)}, \\ \frac{dv(t)}{dt} &= \frac{\gamma e^{-\delta_j \tau} u(t-\tau)v(t-\tau)}{u(t-\tau)+v(t-\tau)} - \delta v(t). \end{aligned}$$

Effect of maturation delay Delayed ratio-dependent model with Allee effect

Model

$$\begin{aligned} \frac{du(t)}{dt} &= u(t)(1-u(t))(u(t)-\beta) - \frac{\alpha u(t)v(t)}{u(t)+v(t)}, \\ \frac{dv(t)}{dt} &= \frac{\gamma e^{-\delta_j \tau} u(t-\tau)v(t-\tau)}{u(t-\tau)+v(t-\tau)} - \delta v(t). \end{aligned}$$

Ecological Complexity 19 (2014) 23-34

Original Research Article

Stage-structured ratio-dependent predator-prey models revisited: When should the maturation lag result in systems' destabilization?

Moitri Sen^a, Malay Banerjee^a, Andrew Morozov^{b.*}

^a Department of Mathematics and Statistics, I.I.T. Kanpur, Kanpur 208016, India ^b Department of Mathematics, University of Leicester, UK

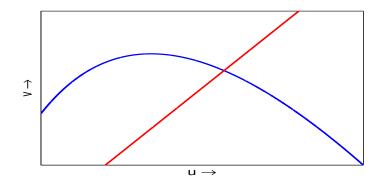
Effect of maturation delay Model with Beddington-DeAngelis functional response

$$\frac{du}{dt} = u(1-u) - \frac{\alpha uv}{\beta + u + v}, \quad \frac{dv}{dt} = \frac{\gamma uv}{\beta + u + v} - \delta v$$

Effect of maturation delay Model with Beddington-DeAngelis functional response

Beddington-DeAngelis functional response

$$\frac{du}{dt} = u(1-u) - \frac{\alpha uv}{\beta + u + v}, \quad \frac{dv}{dt} = \frac{\gamma uv}{\beta + u + v} - \delta v$$

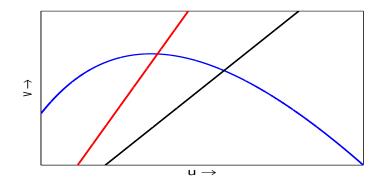


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

(日) (四) (日) (日) (日)

Effect of maturation delay Model with Beddington-DeAngelis functional response

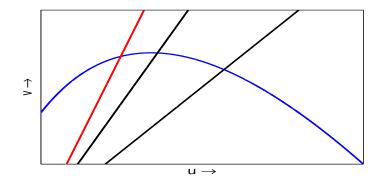
$$\frac{du}{dt} = u(1-u) - \frac{\alpha uv}{\beta + u + v}, \quad \frac{dv}{dt} = \frac{\gamma uv}{\beta + u + v} - \delta v$$



◆□ → ◆□ → ◆ □ → ◆ □ → □ □

Effect of maturation delay Model with Beddington-DeAngelis functional response

$$\frac{du}{dt} = u(1-u) - \frac{\alpha uv}{\beta + u + v}, \quad \frac{dv}{dt} = \frac{\gamma uv}{\beta + u + v} - \delta v$$



Effect of maturation delay

Model with Beddington-DeAngelis functional response

$$\frac{du(t)}{dt} = u(t)(1-u(t)) - \frac{\alpha u(t)v(t)}{\beta + u(t) + v(t)},$$

$$\frac{dv(t)}{dt} = \frac{\gamma e^{-\delta_j \tau} u(t-\tau)v(t-\tau)}{\beta + u(t-\tau) + v(t-\tau)} - \delta v(t)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Effect of maturation delay

Model with Beddington-DeAngelis functional response

Beddington-DeAngelis functional response

$$\frac{du(t)}{dt} = u(t)(1-u(t)) - \frac{\alpha u(t)v(t)}{\beta + u(t) + v(t)},$$
$$\frac{dv(t)}{dt} = \frac{\gamma e^{-\delta_j \tau} u(t-\tau)v(t-\tau)}{\beta + u(t-\tau) + v(t-\tau)} - \delta v(t)$$

Nonlinear Analysis: Real World Applications 11 (2010) 4072-4091

Predator-prey model of Beddington-DeAngelis type with maturation and gestation delays

Shengqiang Liu^{a,*}, Edoardo Beretta^b, Dimitri Breda^c

³ Natural Science Research Center, the Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, 3041#, 2 Yi-Kuang Street, Nan-Gang District, Harbin, 150080, China

^b Istituto di Biomatematica, University of Urbino, I-61029, Urbino, Italy

^c Department of Mathematics and Computer Science, University of Udine, via delle Scienze 206, I-33100 UDINE, Italy

Collaborators

Andrew Morozov

Sergei Petrovskii

Moitri Sen

Yasuhiro Takeuchi

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Thank You