
IS DISPERSAL ALWAYS BENEFICIAL TO 
CARRYING CAPACITY ? 

NEW INSIGHTS FROM THE MULTI-PATCH LOGISTIC EQUATION
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•The SLOSS debate
•The two-patches logistic
• A paradoxical result
• Coupling “reduced models” of resource-
consumer models.
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r1 >> r2

Single Large Or Several Small (SLOSS) patches
is a big issue for biodiversity conservation.

The simplest case :

• Two patches

• One population on each patch (the same)

• Logistic growth + linear dispersal

The SLOSS debate
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The two-patches logistic
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• First investigations : Freedman-Waltman 77, DeAngelis et al 79,
Holt 85, Hanski 99...

• � !1 : Freedman-Waltman 77

• r1
K1

= r2
K2

: DeAngelis-Zhang 14

• Surprisingly no general treatment in 2014

• Arditi, Lobry and Sari, T.P.B. 2015
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Not just simulations : 
uses 



A paradoxical result
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N = concentration of bacteria

s = concentration of substrate

Time

dN

dt
= µN s

ds

dt
= �µN s

N(t) + s(t) = cst = s(0) + N(0) = M

=) dN

dt
= µN(M �N) = µM N
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r = µM K = M
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N = concentration of bacteria
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Time
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This is a ”reduced model”
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The coupling of the two “reduced models”

is not a “reduced model”

of the coupling of the two models.
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The true model

A paradoxical result
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Logistic with :
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Coupling of “reduced models”

Coupling of “full models”

Evora 17 02 01



Evora 17 02 01

The MacArthur reduction



Analysis of the coupling of the “full model” is more complex :

• Take advantage of " << 1 with a

carefull use of Tychonov theorem

(mathematics of quasi-steady state analysis).

• Asymptotic analysis for ↵, � !1

• Asymptotic analysis for ↵, � ! 0

• Complete with computer simulations.
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The MacArthur reduction



↵ = �
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↵ = 0 � Increasing

No migration of the 
resource
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• Coupling “reduced models” is meaningless.

• Coupling “full models” is meaningfull.

• Reduce the coupled “full models” and analyse it.

Conclusion
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