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“The Four Horsemen whose Ride presages the end of the world
are known to be Death, War, Famine, and Pestilence. But even
less significant events have their own Horsemen. For example,
the Four Horsemen of the Common Cold are Sniffles, Chesty,
Nostril, and Lack of Tissues”.

Sir Terry Pratchett
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DIFFERENT VIRUSES AND INTERACTIONS WITH CELLS

H#N#
Orthomyxoviridae
H1-H18, N1-N11

RV-A, RV-B, RV-C
Picornaviridae, gen.
Enterovirus
> 100 serotypes

Influenza virus life cycle Rhinovirus virus life cycle

SOURCES: Webster R.G. A Molecular Whodunit Science 293 (2001), 1773-1775; Watanabe T.,Watanabe S., Kawaoka Y.
Cellular networks involved in the influenza virus life cycle Cell host & microbe 7 (2010) 427-439; Jacobs S.E. et al.
Human Rhinoviruses Clinical Microbiology Reviews 26 (2013) 135-162;
www.virologyhighlights.com/the-common-cold-in-3d/
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EMPIRICAL CLINICAL DIFFERENCE

Influenza:
fever or feverishness (chills);
malaise, headache (at least one of
them)
muscle pain and simultaneously
cough, sore throat, shortness of
breath (at least one of them)
measured temperature ≥ 38oC.

Common cold:
runny or blocked
nose, sneezing,
cough, or sore throat
(at least two of of
these symptoms);
no more
complicated
symptoms/allergy
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FLU AND AMBIENT TEMPERATURE VARIATIONS

The Netherlands: common cold, influenza, air temperature
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SIRS MODEL WITH THE VARIABLE COEFFICIENT

Individuals: Succeptible, Infected, Recovered, Succeptible
Characteristic times: τ – recovering, θ – loss of immunity

Kinetic scheme: ODEs:

S + I k→ 2I

I τ−1
→ R

R θ−1
→ S

dS
dt

= −kIS + θ−1R,

dI
dt

= kIS− τ−1I,

dR
dt

= τ−1I − θ−1R

Probability to catch flu – weather influence: k = k0 [1 + κ (T(t))]
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USEFUL CHANGE OF VARIABLES
In the system

dS
dt = −kIS + θ−1R, dI

dt = kIS− τ−1I, dR
dt = τ−1I − θ−1R

denote N = τ−1I − θ−1R, then since S = 1− I − R,

dR
dt

= N,

dN
dt

= −k
(
τN +

[
1 + τθ−1

]
R
)(

N + θ−1R
)

+(
k− τ−1 − θ−1

)
N + θ−1

(
k− τ−1

)
R.

For k = k0 = const, the stable stationary point:

Rs =
1− τ−1k−1

0
1 + τθ−1 , N = 0



8

Introduction Mathematical model Real data results

EXPANSION AROUND (Rs, 0), I.E. R = Rs + r

The resulted sufficiently non-homogeneous ODE system:

dr
dt

= N,

dN
dt

= Rsθ
−1
(

k− τ−1 − k
[
1 + τθ−1

]
Rs

)
−

−
(
τ−1 + θ−1 + Rsk

[
1 + 2τθ−1

]
− k
)

N −

−θ−1
(
τ−1 + 2Rsk

[
1 + τθ−1

]
− k
)

r−

−kτN2 − k(1 + τθ−1)Nr− kθ−1
[
1 + τθ−1

]
r2.

The highlighted term:
does not depend on variables N and r
is equal to zero if and only if k = const and determines the
direct outer excitation of epidemic oscillations around this
point by the temperature variations
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EXPLICIT TEMPERATURE-DISTURBED FORM
Full system (k = k0 [1 + κ (T(t))]):

dr
dt

= N,

dN
dt

= Rsθ
−1τ−1κ (T(t))−

−
(
τ−1 + θ−1 + Rsk

[
1 + 2τθ−1

]
− k
)

N − θ−1
(

k− τ−1
)

r−

−kτN2 − k(1 + τθ−1)Nr− kθ−1
[
1 + τθ−1

]
r2.

Linearized simple second-order ODE:

d2r
dt2 + λ

dr
dt

+ ω2
0r = Rsθ

−1τ−1κ (T(t)) ,

where both positive

λ = τ−1 + θ−1 + Rsk0
[
1 + 2τθ−1]− k0, ω2

0 = θ−1 (k0 − τ−1)
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SOLUTION OF THE LINEARIZED ODE
Linear ODE with time response
delay:

d2r
dt2 +λ

dr
dt

+ω2
0r = Rsθ

−1τ−1κ (T(t−∆))

Infected:

I =
τ

θ
(Rs + r) + τ

dr
dt

The solution:

I(t) =
τ

θ
Rs +

RS

θ

∫ t

0
κ(t′ −∆)G(t− t′)dt′,

expressed via the Green function:

G(ξ) =
1
ω

e−
λ
2 ξ
[(
θ−1 − λ

2

)
sin(ωξ) + ω cos(ωξ)

]
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SOURCES OF DATA
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TEST: INFLUENZA DYNAMICS (R0 = 1.68± 0.56)

Time series (obs. vs. calc.): Correlation plot* (season 2009):

Results: in spite of qualitative similarity, the quantitative
correlation is low for the both linearized and non-linear) models,
i.e. one needs take into account transmission mechanisms.
*Method: E.B. Postnikov, I.M. Sokolov. Robust linear regression with broad distributions of errors. Physica A 434
(2015) 257-267.
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TEST: COMMON COLD DYNAMICS (R0 = 1.68± 0.56)
Time series (obs. vs. calc.): Correlation plot* (season 2009):

Results: quantitative (corr. coeff.: 92%) correspondence between
observations and the linearized model with 3 days delay
(recovery time: 7 days; ∼ to the susceptible state: 28 days.).

*Method: E.B. Postnikov, I.M. Sokolov. Robust linear regression with broad distributions of errors. Physica A 434
(2015) 257-267.
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INTERPRETATION OF THE LINEARIZED ODE
Non-linear ODE

dI
dt

= I
[
k(T(t))S− τ−1

] Linearized ODE

dI
dt

= k0Iss + κT(t)IsSs

Details of linearization around
the stationary state Ss = (k0τ)−1

(for k = k0 = const); Is 6= 0:
using S = Ss + s, I = Is + i,
k(T) = k0 + k0κ(T),
dI
dt

=
hhhhhhhhk0(IsSs − τ−1Is)− τ−1i+

k0(Ssi + Iss + �is) + κT(t)IsSs

((((
((((

(((
T(t)(Ssiκ+ Issκ+ isκ)

dI
dt

=
XXXXXXX

[
k0Ss − τ−1

]
i+k0Iss+κT(t)IsSs.

I. The contact infecting process
Is: a mean normal level of
the infection present in a
population;
k0: is a standard mean
classic contact rate

II. The physiological
stress-based illness

κT(t): the variation of
probability of a depressed
resistance
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SUMMARY

From the point of view of mathematical modelling,
influenza and common cold are sufficiently
non-equivalent.
Excitation mechanism is applicable to common cold only.
There is a principal possibility of common cold outbreaks
estimation using short-time accurate weather forecasts , as
well as determination of the “normal epidemic level”
using local climate data.

Publications:

E.B. Postnikov, Dynamical prediction of flu seasonality driven
by ambient temperature: influenza vs. common cold. European
Physical Journal B 89 (2016) 13

E.B. Postnikov, D.V. Tatarenkov. Prediction of flu epidemic
activity with dynamical model based on weather forecast.
Ecological Complexity 15 (2013) 109113.
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Thank you for attention!
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