10/02/17

) "
Institut Pasteur DENFREE

pidemic modeling using
stochastic time varying parameters
and Bayesian framework

Bernard Cazelles’

"IBENS and URA 3012 CNRS-Pasteur, Paris

* e Epidemics modeling using

stochastic time varying parameters

It is clear that epidemics are
=Non-linear
=Non-stationary
mStochastic




Epidemics modeling using
stochastic time varying parameters

Overview

Non-stationarity and transients in Epidemiology
Accounting for Non-Stationarity in Statistical Analysis

Accounting for Non-Stationarity in Modeling
AIDS epidemics and Kalman Filter (EKF)
Comparison between EKF and MCMC
Particle Filter (SMC) and MCMC

A SIRS toy model
Flu in Israel
Dengue in Cambodia

Non-stationarity and transients
in Epidemiology

Modification of pathogens, their transmissibility, their
virulence

Characteristics of the epidemics can evolve due to
vaccination or others public health interventions

Climate can influence the propagation of a
pathogen

Societal responses and/or changing human
behavior during the course of an epidemic
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Non-stationarity and transients
in Epidemiology

Example of measles and whooping cough in UK
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Figure 1: Aggregate measles and whooping cough notifications in England and Wales from 1944 to 1994; data obtained from the Registrar General’s
e series for square root of measles cases in England and Wales, with vaccination starting in 1968 (dotted line). B, Square
h in England and Wales, with the onset of national vaccination indicated by the dotted line.
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Non-stationarity and transients
in Epidemiology

An example of measles epidemics in York (UK)
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Non-stationarity and transients
in Epidemiology

Links between climatic oscillations and some quasi-
periodic epidemics like Cholera in Bangladesh

Rodo et al 2002
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Accounting for Non-Stationarity in
Statistical Analysis

For statistical approaches | have developed
numerous tools using wavelet decomposition

Wavelet analysis estimates the specitral
characteristics of a time series as a function of time

Wavelet analysis decomposes a signal into time-
space and frequency-space simultaneously

10/02/17



10/02/17

Accounting for Non-Stationarity in
Wavelet Coherency
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Accounting for Non-Stationarity in
Statistical Analysis

Wavelet Clustering
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Accounting for Non-Stationarity in
Statistical Analysis

Others tools

Phase Analysis

Wavelet Partial Coherency
Wavelet Mean Field
Wavelet Causality
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Accounting for Non-Stationarity in Modeling

Reconstruction the time evolution of some key
parameters without any specific hypothesis:

We have used:
State space models

{xt =g, x(t),0) + u,
Velxe = f(h(x(t));}’t» 9) + v,
Parameters considered to be state variables

that follow a diffusion process
Inference tools as Kalman Filter or Bayesian

approaches (MCMC, K-MCMC and P-MCMC)

Accounting for Non-Stationarity In Modeling

State space models

{5% =gt x(),0) + u,
Velxe = f(h(x(t)):}’t» 9) + v

System process: an epidemiological model

Observational process: a probabilistic law

with an observation rate, p
Poisson
Negative Binomial
Normal

10/02/17



Accounting for Non-Stationarity in Modeling

State space models

{xt = g(t,X(t),H) + U
Velxe = f(h(x(t)),yt, 9) + v,

Parameters considered to be state variables
that follow a diffusion process

df, =odB,
dlog(6,)=o0dB,
6, =0+0B,

Accounting for Non-Stationarity in Modeling

Parameters considered to be state variables
that follow a diffusion process

Mainly focusing on the force of infection
1= piny X010

(IOS (t)S(t))(pI (t)l(f)) A,(t) _ /J’(t) (S(t)ps(t))_(l(t)pl(t))
N N

A1) = B(0).

ORVIOREEC

Reconstruction of g'(t) solely based on data
without specific hypothesis
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ABSTRACT

Many factors, including therapy and behavioral changes, have modified the
course of the HIV /AIDS epidemic in recent years. To include these modifications in
HIV/AIDS models, in the absence of appropriale external data sources, changes
over time in the parameters can be incorporated by a recursive cstimation technique
such as the Kalman filter, The Kalman fikler accounts for stochustic fluctuations in
both the model and the data and provides a means to assess any paramefer
modifications included in new observations. The Kalman filter approach was applied
1o a simple differential model to describe the abserved HIV /AIDS epidemic in the
homo /bisexual male community in Paris iFrance). This approach gave quantitative
information on the time-evolution of some parameters of major epidemiological
significance (average transmission rate, mean incubation ratc, and basic reproduc-
tion rate), which appears quite consistent with the recent epidemiological literature,
@ Elsevier Science Inc., 1997

1. INTRODUCTION

Public health authorities must answer several questions in the moni-
toring, planning, and intervention aimed at controlling the HIV /AIDS
epidemic. Epidemiological HIV/AIDS modeling can help to answer
these questions by making projections of the epidemic into the future.

Three main approaches based on reported AIDS cases have been
proposed for that purpose. The firsi, a direct approach uses empirical
curves [1, 2]. This method fits an assumed mathematical equation based
on observed incidences of AIDS and then extends the curve into the
near future, The second approach uses back-calculation [3-6). Back-
calculation is a deconvolution process in which a given AIDS incidence
up 1o time ¢ and an estis distribution for the i ion period are
used to estimate the HIV incidence up to that time. Then this HIV
incidence is extrapolated to the following years to forecast AIDS

MATHEMATICAL BIOSCIENCES 140:131-154 (1997)
@ Elsevier Science Inc., 1997 0025-5564 /97 /$17.00
655 Avenue of the Americas, New York, NY 10010 P11 S0025-5564(96)00155-1

HIV / AIDS Modeling

AIDS in lle-de-France between 1981 and 1992
AIDS in the homosexual population
A simple model with multiple class of seropositives (/s)

§=A—)L(t)—u.S
dt

dl
” ) (yl(t) + y)

S s
O -(r0+u)d, with A= N'E B().I.

i=1

Two time varying parameters: g(t) and y,(t)=y(t)

o B0 (10
"+ u G\ v+ u

i-1

then
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HIV / AIDS Modeling

State Equations: the numerically integrated AIDS model

Xa=fX)+W,
Diffusion equation for the two time varying parameters:
0..=0+W,
Observation Equation: Z,=A(t)
Z =hX)+V

Inference with Extended Kalman Filter (EKF)
Pr(Xk |Z1,...,k—1) ~N
Pr(Xk |Zl,...,k) ~N
W ~N(0,0)
V ~N(O,R)

Extended Kalman Filter

The Kalman Filter provides an optimal estimation of state
described by a state-space model

The Kalman Filter is a recursive procedure that estimates
the mean and the variance of the state variables

Using a parameter equation one can assess the parameter
changes and thus characterize non-stationary dynamics
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Extended Kalman Filter

Prediction at time t of the mean and the variance of the
states (including parameters) with values at time t-1
tht—l = f (Xt—llz—l)
T
B, =E.F,_ .F +0Q
Correction at time t of the mean and the variance of the
states based on the observation available at time t

)/\(tlt = j\(tlt—l + K[Yt - h(},\(tlt—l)]
Blt = [I - K'Ht—l]’PIII—l [1 - K'Ht—l ]T +R

with K the gain of the filter K = P,_.H/ [H,.P, .H' +R]"

with H and F the linearized forms of the functions h and f, and
Q and R are the variance matrix of noise components

Aids Modeling

4 6000 ‘ ‘ ‘ ‘ ‘ %7000
(]

& 5o o & 6000

2 4000 Y 55000

= U

<m0 g 24m0

>

5 2000 o g 000

() ]

E a0 o E 2000

O e A 5 1000
1980 1982 1984 1986 1988 1990 1992

Year

Cazelles et al 1997

1986 1987 1988 1989 1990 1991 1992

Calendar Time

10/02/17

12



Aids Modeling
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ABSTRACT

Many factors, including therapy and behavioral changes, have modified the
course of the HIV /AIDS cpidemic in recent years. To include these modifications in
HIV/AIDS models, in the absence of appropriale external data sources, changes
over time in the parameters can be incorporated by a recursive cstimation technique
such as the Kalman filier, The Kalman filer accounts for stochustic fluctuations in
both the model and the dua and provides a means (o assess any parameter
‘modifications included in new observations, The Kalman filter approach was applied
10 a simple differcatial model to describe the observed HIV /AIDS epidemic in the
homo /bisexual male community in Paris iFrance). This approach gave quantitative
information on the time-cvolution of some parameters of major epidemiological
significance (average transmission rate, mean incubation rate, and basic reproduc-
tion rate), which appears quite consistent with the recent epidemiological literature,
© Elsevier Science inc., 1997

1. INTRODUCTION

Public health authorities must answer several questions in the moni-
toring, planning, and intervention aimed at controlling the HIV /AIDS
epidemic. Epidemiological HIV/AIDS modeling can help to answer
these questions by making projections of the epidemic into the future.

Three main approaches based 0a reported AIDS cases have been
proposed for that purpose. The firsi, a direct approach uses empirical
curves (1, 2). This method fits an assumed mathematical equation based
on observed incidences of AIDS and then extends the curve into the
near future, The second approach uses back-calculation [3-6]. Back-
calculation is a deconvolution process in which a given AIDS incidence
up Lo time ¢ and an estimated distribution for the incubation period are
used to estimate the HIV incidence up to that time. Then this HIV
incidence is extrapolated to the following years to forecast AIDS

MATHEMATICAL BIOSCIENCES 140:131-154 (1997)
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Particle Filter (SMC) and MCMC
Since 2014

We coupled time varying parameters approach with
Bayesian methods coupling SMC and MCMC for
stochastic non-linear systems partially observed

We used a stochastic framework with Markov jump
process (or an approximation of it)

In our case, we used the Poisson with stochastic
rates, by Breto et al. (2009), coded in the SSM
software (Dureau et al. 2013).

10/02/17
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Particle Filter (SMC) and MCMC

Inference and parameter estimation are performed with K-
MCMC or P-MCMC (Andrieu et al. 2010; Dureau et al 2013)

In the stochastic framework, the likelihood is intractable thus
EKF or SMC is used to compute it in the MCMC

L is the model likelihood p(yy.7|6). WkU) is the
weight and x}(j) is the state associated to particle j
at iteration k.

Lisetr=1w =1/
2: Sample (xéj))j:t_, from p(x|6g).

3 for k=0:n—1do
forj=0:Jdo

4 B

5 Sample (Xlgjll)filiJ f‘rom P(Xkta | Xk, )
6: Set al) = p(yk+1\x£/ll, 9)

7: end for
8

9

) _ 19) 1 )
Set Wk+1 - 27,:1 NU) and L = LJ Zj Q(
R le (xU) L w)
esample (onk+:l. )j=1:4 from Py

10: end for

Particle Filter (SMC) and MCMC

Inference and parameter estimation are performed with K-
MCMC or P-MCMC (Andrieu et al. 2010; Dureau et al 2013)

In the stochastic framework, the likelihood is intractable thus
EKF or SMC is used to compute it in the MCMC

Use the implementation provided in SSM software (Dureau et

10/02/17
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Particle Filter (SMC) and MCMC

Plug-and-play versions of
MIF, pMCMC, ksimplex, kMCMC
available soon on www.plom.io

PLoM.io

Public Library of Models (starting with epidemiology)

Now P i
named W o
SSM N’

Developped by S. Ballesteros, T. Bogich and J. Dureau
with the support of B. Grenfell and B. Cazelles

Epidemics modeling using
stochastic time varying parameters

Overview

Non-stationarity and transients in Epidemiology
Accounting for Non-Stationarity in Statistical Analysis

Accounting for Non-Stationarity in Modeling
AIDS epidemics and Kalman Filter (EKF)
Comparison between EKF and MCMC
Particle Filter (SMC) and MCMC

A SIRS toy model
Flu in Israel
Dengue in Cambodia

10/02/17

16



A simple SIRS model where both the parameters and the

A SIRS toy model

Poisson observation process are known

ds S.I
L (N=8)-B0O) > ar
g ~N=S8)-p0 e
dl S.I

g2 1

== PO~ =(r+n)
Z—I:=y.1—(a+u).R

p(t)= /3’0.(1 + f3,.sin (% + 2n¢))

We started with initial conditions
outside the attractor to generate
a transient dynamics:

B, =065
B, =004
$=-02
y=1/14
a=1/(7%365)
u=1/(50%365)

N =10000
S(t =0) =600
1(1=0)=30

The aim is to reconstruct the sinusoidal time evolution of £(t)

just based:
on a diffusion process

dlog(B()) = 0.dB(1)

A SIRS toy model

on data generated based on real incidence with a
reporting rate, p = 1, and the Poisson observation

process

10/02/17
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A SIRS toy model
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P A SIRS toy model
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A SIRS toy model
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Flu in Israel

Yaari et al (2013) and Axelsen et al (2014) used a discrete
deterministic SIR model to describe flu epidemics in Israel

They considered that R,(t) depends on climatic variables

i(r) = %.RO (0).(1+ (S(t)).;PT.i(t -7)
S(t)=S(t-D-i(t) +a.R(t-1)
R(t)=R(t-1)+1(t-d)-a.R(t-1)

R,(t)= R_O[l + f(Temp,Hum).sin(w.t)]

- Yaari, R., Katriel, G., Huppert, A., Axelsen, J. B., & Stone, L. (2013). Modelling seasonal influenza: the role of weather and punctuated
antigenic drift. Journal of The Royal Society Interface, 10(84), 20130298.

- Axelsen, J. B., Yaari, R., Grenfell, B. T., & Stone, L. (2014). Multiannual forecasting of seasonal influenza dynamics reveals climatic and

evolutionary drivers. Proceedings of the National Academy of Sciences, 111(26), 9538-9542.

Flu in Israel

Using Israeli data, the aim is to reconstruct the unknown time
evolution of S(t) just based :

on a diffusion process

as _ _(N—S)—/g’(t).(%+i)+a.R

dI SI . p=015
E=ﬁ(t)'(ﬁ+l)_(”“)'l @ =004

p S(t=0)= p.N
—-=1d-(a+u).R I(t=0)=p,.N

dlog(B(1)) = 0.dB(1)

and incidence data from 1998-2003 using a NegBin law as
observation process

Estimation on the following parameters: o, y, o, i, ps, p;

10/02/17
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Flu in Israel
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Dengue Modeling with time varying parameters

Aguiar et al. JTB 2011
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Dengue Modeling with time varying parameter

Time evolution of 5(t) for dengue in Phnom Penh

Dengue Modeling with time varying parameter
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Dengue Modeling with time varying parameter
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Epidemics modeling using
stochastic time varying parameters

Concluding remarks

It is important to take into account non-stationarity when
analyzing epidemiological datasets.

Time-varying parameters modeled with a diffusion process
seems an interesting possibility in a first stage before
using a more complex model.

Models with time-varying parameters can be easily used to
predict an epidemic in real time.

Focusing on inference, the performances of KF can also
be explored for epidemiological modeling.
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