Cell-based modeling of tissue-level responses to mechanical strain

Roeland Merks

Lisanne Rens, René van Oers, Hannan Tahir,
Theo Smit (AMC) and lab members
Centrum Wiskunde \& Informatica (CWI),Amsterdam
Mathematical Institute, Leiden University
@roeland_merks, merks@cwi.nl
Eighth Workshop
Dynamical Systems Applied to Biology and Natural Sciences Evora, Portugal, February Ist 2017

CWI

Morphogenesis

How is the linear information in the DNA translated into the three-dimensional shape of organisms?

DNA

CWI

Animals are 'swarms' of cells'

- Predict 'swarm' properties from cell-cell interactions
- Observe local cell-cell interactions responsible for it
 \title{
Cells look as if they
 \title{
Cells look as if they act independently...
} act independently...
}

Zebrafish blastoderm (embryonic tissue)

but of course cells respond to one another

Contact-inhibition of frog neural crest cells Carmona-Fontaine et al. Nature 2008 (Mayer/Stern group)

Cell based models

(Merks and Glazier, Phys. A 2005)

- Input: cell behavior
- Output: development of multicellular structure
- Growth and form of tissues and organs
- Aim of cell-based modeling is to understand:
- How cells 'build’ animals
- How tissue structure feeds back onto cell behavior
- How a genetic mutation can lead to phenotypic changes

Simulation methods

- Membrane movement and cell shape are often key
- So: multiparticle methods

Cellular Potts Model (CPM)

Cellular Potts Model (CPM)

Accept always

$$
H=\sum_{\vec{x}, \vec{x}^{\prime}} J_{\tau\left(\sigma_{\vec{x}}\right), \tau\left(\sigma_{\vec{x}^{\prime}}\right)}\left(1-\delta_{\sigma_{\vec{x}}, \sigma_{\vec{x}^{\prime}}}\right)+\lambda \sum_{\text {Voll adhesion }}\left(a_{\sigma}-A_{\sigma}\right)^{2}
$$

Cellular Potts Model (CPM)

Cellular Potts Model (CPM)

Repeat

$$
H=\sum_{\vec{x}, \vec{x}^{\prime}} J_{\tau\left(\sigma_{\vec{x}}\right), \tau\left(\sigma_{\vec{x}^{\prime}}\right)}\left(1-\delta_{\sigma_{\vec{x}}, \sigma_{\vec{x}^{\prime}}}\right)+\lambda \sum_{\text {Voll adhesion }}\left(a_{\sigma}-A_{\sigma}\right)^{2}
$$

Typical problem: Differential-adhesion-driven cell sorting

Data: Krieg et al. Nature Cell Biology, 2008

Simulation result

$$
\begin{gathered}
J_{\text {green,green }}<J_{\text {red,red }} \\
J_{\text {red,green }}=J_{\text {red,red }}
\end{gathered}
$$

Modelsimulatie $10 \times$ versneld
ecto
meso

CWI

Simulation result

$$
\begin{gathered}
J_{\text {green,green }}<J_{\text {red,red }} \\
J_{\text {red,green }}=J_{\text {red,red }}
\end{gathered}
$$

Modelsimulatie

I0x versneld

CWI

Simulation result

$$
\begin{gathered}
J_{\text {green,green }}<J_{\text {red,red }} \\
J_{\text {red,green }}=J_{\text {red,red }}
\end{gathered}
$$

Modelsimulatie

I0x versneld

Alternative representation: Boundary-element model

Coordination of tissue growth during morphogenesis

- If one tissue grows in the embryo:
- adjacent tissues need to follow
- internal structure of tissues needs to adapt to strain
- Examples:
- Relative growth of bones and muscles
- Muscle fibers must be oriented parallel or at a specific angle to the long axis of the muscle
- Connective tissues and skin
- Orientation of segments along the extending body axis

In vitro model: Cells align to static strain in fibrous substrates

Endothelial cells on collagen (BAEC)

Van der Schaft et al. Tiss Eng A, 2011

Fibroblasts on collagen

Eastwood et al. 1998

Fibroblasts align to stretch, but collagen fibers do not

Cell-free matrix stretched overnight

Eastwood et al.
Cell Motil. Cytoskel. 1998

CWI

Cells also align to static stretch on non-fibrous substrates

Collinsworth et al. Cell Tiss. Res. 2000

Mesenchymal stem cells (rat - PDMS)

Liu et al. Cell Mol Bioeng 2014

Hypothesis: ‘active cell sensing'

- (1) Cells pull on matrix
b 3D forces, soft substrate

c 3D forces, stiff substrate

Hersen \& Ladoux, Nature (2011)

- (2) matrix strain-stiffens
- (3) Increased tension stabilizes focal adhesions to matrix on strained matrixes

Iskratsch et al. Nat. Rev. Mol. Cell. Biol. (2014)

Mechanical cell-matrix feedback

Van Oers, Rens, et al. PLoS Comp Biol. 2014

Modeling cell response to stretch using Cellular Potts Model

- ECM: Finite-element model (FE) of compliant substrate
- Linear elastic assumptions
- FE-calculations yield local principal strains
- (magnitudes ε_{1} and ε_{2}, along \vec{v}_{1} and \vec{v}_{2})
- Approximate strain stiffening:
- Perceived ECM stiffness: $E\left(\varepsilon_{1}\right)$
- Mimic focal adhesion maturation under strain:

$$
\begin{aligned}
& \Delta H_{\text {mech }}=-g\left(\vec{x}, \vec{x}^{\prime}\right) \lambda_{\text {durotaxis }}\left(f\left(E\left(\varepsilon_{1}\right)\right)\left(\vec{v}_{1} \cdot \vec{v}_{m}\right)^{2}\right. \\
& \left.+f\left(E\left(\varepsilon_{2}\right)\right)\left(\vec{v}_{2} \cdot \vec{v}_{m}\right)^{2}\right) \\
& f(\varepsilon) \\
& \varepsilon
\end{aligned}
$$

Van Oers, Kens, et al. CLoS Comp Biol. 2014

Response of single cells to external, static strain

Cells pull on substrate

Reinhart-King et al. Biophys. J. 2005

Cells pull on substrate

- Lemmon \& Romer (Biophys. J. 2010):
- Cells "acts as single cohesive unit"
- Force between any two points in cell proportional to distance between them
- Zero traction in cell centroid

Implementation in CPM:

Feedback between cell traction and strain response

CWI

Behavior of single cells

Feedback between cell-induced strain and cell responses
Cardiomyocytes (it works about the same for ECs...):

Winer et al. , in: Wagoner et al. (eds.), 2011

SOFT SUBSTRATE

- stretch all around
- contraction

05 kPa

8 kPa

INTERMEDIATE SUBS.

- stretch along long axis
- elongation

12 kPa
1
14 kPa

16 kPa
32 kPa

CWI

Cell-cell interactions (Reinhart-King et al. 2008)

Soft matrix (500 Pa) Cells touch and remain in contact

Stiffer matrix (5.5 kPa) Cells touch, loose contact, touch again

Stiff matrix (33 kPa) Cells touch and walk away

Mechanical cell-cell communication

cf. Bischofs and Schwarz PNAS 2003

CWI

Mechanical cell-cell communication

Universiteit Leiden

Van Oers, Rens, et al. PLoS Comp Biol. 2014

CWI

Collective cell behavior on unstretched matrix

Example: bovine aortic endothelial cells on poly-acrylamide substrate (non-fibrous)

Soft matrix

Stiff matrix

Califano and Reinhart-King, 2008

Resulting collective behavior

CWI

woensdag 15 februari 17

CWI

Bridging events

Danielle LaValley and Cynthia Reinhart-King

CWI

Sprouting

Van Oers, Rens, et al. PLoS Comp Biol. 2014

Cell contractility ("active sensing") amplifies sensitivity to matrix strain

- Only external strain - 30 degrees, 0.025
- Cells do not exert forces on matrix

Rens \& Merks
Biophys. J. 2017 arXiv:1605.03987

Cell contractility ("active sensing") amplifies sensitivity to matrix strain

- External strain - 0.025, 30 degrees
- Cells do exert forces on matrix

Rens \& Merks, Biophys. J. 2017, arXiv:1605.03987

Contractility increases precision and speed of cell orientation

Rens \& Merks, Biophys. J. 2017, arXiv:1605.03987

CWI

Two cells, no cellular traction

Rens \& Merks, Biophys. J. 2017, arXiv:1605.03987

Two cells, cellular traction

Rens \& Merks, Biophys. J. 2017, arXiv:1605.03987

Contractility enhances speed and precision of cell-cell alignment

Rens \& Merks, Biophys. J. 2017, arXiv:1605.03987

CWI

Rens \& Merks, Biophys. J. 2017, arXiv:1605.03987

CWI

... but only if cells exert forces on matrix

Rens \& Merks, Biophys. J. 2017, arXiv:1605.03987

Active cell sensing accelerates response to strain

Rens \& Merks, Biophys. J. 2017, arXiv:1605.03987

Balance between cell contractility and stretch determines patterning

Stretching

CWI

Next step:

Focal adhesion kinetics

Mechanical strain during somitogenesis

- "Somites without a clock" (Dias et al. Science 2014)
- Ectopic somites form from dorsalized, ventral primitive streak tissue

- Ectopic somites not polarized, no cyclic gene expression
- Can extension of body axis put somites in a row?

Acknowledgments

CWI
 Lisanne Rens
 Hannan Tahir
 MI - U Leiden
 Claudiu Antonovici

Koen Schakenraad
Leonie van Steijn
Esmée Vendel

Alumni:

Sonja Boas
Josephine Daub
René van Oers
Dimitrios Palachanis
Margriet Palm
András Szabó

Collaborators for this talk:
Cornell University
Danielle LaValley
Cynthia Reinhart-King

AMC Amsterdam

Theo Smit
Manuel Schmitz
Ben Nelemans
Leiden University
Sander Hille (mathematics)
Remko Offringa (biology)

Funding:

