

MODELLING THE POPULATION DYNAMICS OF AN INSECT PEST

Ferdinand Pfab; Andrea Pugliese

S. Bhattacharya, V. Clamer

Department of Mathematics, University of Trento

G. Anfora, V. Rossi Stacconi, A. Grassi

Fond. Edmund Mach – Centro Ricerche e Innovazione e Centro Trasferimento Tecnologico

BACKGROUND

DROSOPHILA SUZUKII

Wide host range <u>Main host plants</u>:

blackberries, blueberries, cherries, peaches, raspberries, strawberries, grapes (wine and table), kiwis, apricots, figs, pears

Several alternative wild hosts

Wild host plant

The escalating outbreak in Europe

D. SUZUKII IN ITALY Study area

FIELD DATA IN TRENTO PROVINCE

33 trapping sites with weekly sampling since 2011; 68 since 2013

TRAPPING DROSOPHILA

Traps were serviced once a week starting from the half of April, until the end of October .

<u>Rossi Stacconi *et al.,* 2013. Entomologia</u>

Since 2013, many traps have been maintained all year round.

OVERALL TREND OF FIELD DATA

BUT PATTERNS DEPEND ON ELEVATION

January 31-February 3, 2017

8th Workshop DSABNS, Evora, Portugal 12

FIELD DATA IN TRENTO PROVINCE

06/01/2014 Bolzano

	owner	type	m	pop.
	Az.Mosca	cil., frag.,lamp.,mora	77.	θ.
	Az.Delaiti Luca	ciliegio	189.	na
	Az.Caldonazzi	ciliegio	198.	2.
	parco al Fersina	parco + torrente	195.	na
	Az.Osti Aldo	ciliegio	203.	1.
	Az.Adami	ciliegio	207.	na
13	fam.Natted1	giardino (cil., vite)	213.	1.
Luna	Az.Keller	bosco al vigneto	234.	612,
	Az.catavin	Lampone unit.	234.	na
	ponte al Galilei	bosco + torrente	242.	17
	Az Gobber	ciliagio	249.	
	abit. Topmaso	giarding domestico	252	0.
	FFN	vigneto	272.	28.
	Orrido	bosco + torrente	347.	na
	az.Ganper	bosco	357.	na
	az.Gamper	lampone,mora	357.	na
	Az.Armanini	fragola	377.	na
acche	cava	bosco + torrente	395.	na
acche	Az.Laner	fragola	482.	па
	Az. Trentinaglia	mirtillo	411.	na
	Az.Trenti G.	ciliegio	421.	1.
	Az.Baitella	Lampone	430.	na
	Az.Giovannini	fragola	430.	na
	Az.Ueller/Montibeller	mirtillo	430.	na
	Az.Pintarelli	Lampone	448.	na
10	Az.capra T.	tragola	467.	na
	Az Zapotti	cillegio	472.	na
	Az Giouzonatti	ciliario	475	1
	FFM	diversi of	487	8
	Az Bortolotti	ciliegio	489.	1.
	Az.Gretter	ciliegio	506.	184.
	Az.Bertoldi Mauriz.	ciliegio	506.	na
0	strada sotto paese	ciliegio selv.	523.	na
	az.Dalponte	ciliegio	528.	na
	az.Bonavida	ciliegio	529.	na
	Az.Giongo C.	mirtillo	530.	na
		ciliegio	572.	na
1	Az.Biasi	albicocco	579.	na
etta	Az.Puecher	ciliegio	618.	na
	Az.Zampedr1 D.	Lampone	656.	na
	Az. Valerani	ciliegio	657.	na
are	Az.Bertoldi	Tragola	651.	na
	Az Pianchi	ciliagio	676	na
	Az Bertoldi Marco	ciliagio	697	4
paese	Az.Nicheloni	mirtillo	691.	100
	Az.Naccani	ciliegio	709.	na
	Az.Delaiti Guido	ciliegio	719.	na
	Az, Pecoraro	cil., mirt., frag., mora	722.	2.
	Az.Debiasi	fragola	729.	na
ino2	Az.Pontalti M.	ciliegio	737.	na
ino	Az.Pallaver	ciliegio	781.	na
	Az.Franchini	ciliegio, mirtillo	787.	8.
	Az. Tiso	mirtillo	798.	na
	Az.Crosina S.	ciliegio, albicocco	792.	Θ.
2	Az.Dalsasso	mirtillo	795.	na
	Az. Tiso	bosco	796.	7.
sino	Az.Fabbro	mora	835.	na
	Az.Nardelli	ciliegio, lampone	868.	na
	Az.Brentari	ciliegio	897.	na
	Az Watting F	fragela	901.	na
	Az Terradri	fragola	976	114
	Az. 1655-8011	hoseo	930.	113
	Ar. Coratta	ciliagio, albicocco	1085	11.0
	Az . Romarna	mirtillo, fragola	1057	na
	Az, Granello	fragola	1067	D.a
	Az.Paoli	lampone u., mora	1091.	na
S.Orsola		bosco	1252.	na
bus		bosco	1493.	na
rsina		bosco	1795.	na

location

Romagnano

Besenello Mezzocoror Roverè d.I

Besenello Trento

S.Michele Pergolese Trento S.Michele Trento

Trento Zambana V

Riva Aldeno

DEMOGRAPHIC LABORATORY DATA

- Tochen et al. (2014) at various temperature (on cherries and blueberries)
- Tochen et al. (2015) at various humidity levels (on blueberries)
- Data collected in LeXeM project at tempearture 23 °C and humidity 70% (cherries)
- Data collected in LeXeM project at temperature 22 °C and humidity 35% and 75% (blueberries)
- Kinjo et al. (2015): temperatures 25-33 °C *(some under varying temperatures)*
- Dalton et al. (2011): survival at 1-10 °C (also after freeze exposure)
- Chabert et al. (2013): several treatments
- Emiljanowicz et al. (2014); Gray et al. (2016) at several temperatures and treatments (on diet)
- Shearer et al. (2016) survival of winter and summer morphs at different temperatures
- Large consistency in data about larvae survival and development, much less about adults.
 January 31-February 3, 2017
 8th Workshop DSABNS, Evora, Portugal 14

FITTING ENVIRONMENT VARIABLES DEPENDENT FUNCTIONS Larval development rate = 1/(Time from adult to egg)

Shape and colour of points correspond to different humidity levels and raising media.

Development = 0 at T=8.3 °C

OBJECTIVES OF MODELLING THE POPULATION DYNAMICS OF D. SUZUKII

- [Big economic relevance of the pest]
- Understanding main factors affecting its population dynamics
- Providing short-term predictions on abundance and spatial distribution
- Assessing potential control measures (mass captures, insecticides, parasitoids) and developing guidelines on their implementation

MODEL STRUCTURE: POSSIBLE CHOICES

- •ODE formulation with compartments (eggs, larvae, pupae, adults) and rates=1/(development time)
- •Age-structured models (Tochen et al, 2014; Wiman et al, 2014)
- Physiologically-structured model: immatures (and adults) denoted by a maturity variable *x (may correspond to instar stage),* with development depending on temperature and other environmental variables.
 - •Mathematically equivalent (as for immatures) to models with temperature-dependent delays (Langille et al, 2016), and extending degree-days models
 - It seems to be the most flexible approach to variable environment.

MODEL STRUCTURE

COMPLETE MODEL

- $\frac{\partial L}{\partial t} + \frac{\partial}{\partial x} (g_L(E(t))L(t,x)) = -\mu_L(E(t))L(t,x) \qquad x \in (0,1)$ $\frac{\partial A}{\partial t} + \frac{\partial}{\partial x} (g_A(E(t))A(t,x)) = -\mu_A(E(t),\mathbf{x})A(t,x) \qquad x > 0$ $g_L(E(t))L(t,0) = \int_0^\infty b(E(t),\mathbf{x})A(t,x) \, da$ $g_A(E(t))A(t,0) = g_L(E(t))L(t,1)$
 - *E(t)*: environmental conditions (temperature, humidity...)
 - $1/g_L(E)$: developmental time (egg -> adult)
 - $1/g_A(E)$: mean life of an adult
 - Assumptions: $\mu_A(E,x) = g_A(E)\nu(x)$ $b(E,x) = b(E)\phi(x)$

USE OF LABORATORY DATA TO ESTIMATE MODEL FUNCTIONS

Larval mortality rate

4th deg

ADULT MORTALITY

Parsimonious form:

 $g_A(E)$

ADULT MORTALITY

only from Lexem data

 $\mu_A(E,x) = g_A(E)\nu(x)$

FECUNDITY $b(E)\phi(x)$

TEMPERATURE AND GROWTH RATE

In constant environment, equivalent to age-structured model

Growth rate *r* peaks at higher temperatures than reproduction number *R*_o

NUMERICAL SCHEME

NUMERICAL SCHEMEVS. PDE MODEL

Finally, we get an explicit scheme:

$$L_j^{k+1} = \frac{L_j^k}{1 + \mu_L^k \Delta t} \left[1 - \frac{\Delta t}{\Delta a} g^k\right] + \frac{L_{j-1}^k}{1 + \mu_L^k \Delta t} \frac{\Delta t g^k}{\Delta a}$$

- In the PDE, all eggs laid together mature at the same time
- In the numerical scheme, a distribution for the time to maturity T_m

• If
$$g^k \equiv g, \ \Delta a = \frac{1}{N}$$
 then

$$\mathbf{E}(T_m) = rac{1}{g}, \quad \mathbf{V}(T_m) = rac{1 - Ng\Delta t}{Ng^2}$$
nuary 31-February 3, 2017

Is the numerical scheme a better model?

PRACTICAL ASPECTS OF SIMULATION

- We set a `biological' time step of 1 day
- We compute all parameters using either the daily mean temperature or daily minimum and maximum;
 - in the latter case, we assume and have for that day similarly for all parameters $T(t) = \frac{T_M + T_m}{2} + \frac{T_M - T_m}{2} \sin(2\pi t)$ $g_L \equiv \int_0^1 g_L(T(s)) \ ds$

(the idea is similar to the degree-days, widely used by entomologists)

- If CFL condition is violated for $\Delta t = 1$ day, choose $\Delta t = 1/n$ and repeat *n* steps.
- Simulations using min and max T are smoother and appear more realistic.

Simulations using daily Min & Max temperatures on Central California data

COMPARISON OF SIMULATIONS WITH DAILY MEANS OR MIN-MAX

LABORATORY MODEL WITH FIELD TEMPERATURES OF TRENTINO

Simulations starting with 100 adults on April 15

2015 was the hottest summer since 2003; 2014 was one of the coldest. Predictions: lower densities in 2015 for the low-altitude sites; higher densities in 2015 at high elevations.

Simulations based only on *daily* min and max temperatures; no humidity or rainfall.

January 31-February 3, 2017

8th Workshop DSABNS, Evora, Portugal 31

CATCHES 2014-16

Traps around San Michele

- Summer densities were lower in 2015
- Very sharp increases in densities in November
- Significant catches also in winter (especially in 2014)

CATCHES 2014-16

Traps around Pergine (near orchards)

- No consistent differences among years (but very high peaks in 2016)
- No consistent trend in averages between August and November

CATCHES 2014-16 High-elevation sites (near orchards)

- Somewhat lower peak in 2014 than other years
- Period with high densities shorter than at lower altitudes.

WHOLE-YEAR SIMULATION WITH CARRYING CAPACITY temperatures San Michele

fixed carrying capacity (effect on fecundity and larval mortality)

- No population burst in November.
- **Possible explanations**?
 - Migration btw. sites (mark-recapture experiments support the possibility)
 - Attractiveness of traps related to fruit availaibility.
- Also missing winter morph

ADDITIONAL MODEL INGREDIENTS

Fruit function (inspired to Poyet *et al*, 2015)

Winter adaptation (inspired to Shearer *et al*, 2016)

Carrying capacity proportional to fruit function. Trap attractiveness decreasing with fruit abundance

Adult mortality curve shifted 5 °C to the left in winter. Minimum mortality at 9 °C instead of 14 °C 8th Workshop DSABNS, Evora, Portugal 36

SIMULATIONS OF REVISITED MODEL

San Michele temperatures and standard fruit function

Solid lines: simulated catches Dotted lines: actual catches

> In the model catches are low in the middle of the season, but pop. density is high.

SIMULATIONS OF REVISITED MODEL. 2

San Michele temperatures and standard fruit function

Solid lines: simulpop. density (adults & juv.) Dotted lines: actual catches

In some cases, external validation of result could be obtained by fruit infestation assessments.

SIMULATIONS OF REVISITED MODEL. 3

Pergine temperatures; modified fruit function

(accounting for cherry and berry orchards)

Thick solid lines: simulated catches Dotted lines: actual catches

Change in temperatures and fruit function cause a different qualitative pattern of simulations Increase in catches 2014-16 require external driver

CONCLUSIONS

- Models based on laboratory data emphasize a strong effect of temperature on population dynamics. The comparison among years of catches at different altitudes supports the relevance of this on field data.
- Different annual patterns among sites are explained by the model through different "fruit functions", mimicking fruit availaibility.
- Lower attractiveness of traps at times of fruiting plays an essential role in model fitting. Support only anecdotal so far.
- Multi-year increase of population density not really explained: endogenous pattern, or external factors?

CURRENT WORK AND OBJECTIVES

- Obtain objective indices of fruit abundance;
- Parameter fitting and statistical comparison of models;
- Use infestation indices as external model validation;
- Consider using other environmental variables;
- Use more realistic models for winter adaptation;
- Include control measures (parasitoids, spraying,...);
- Spatio-temporal dynamics.

Thanks for the attention

Souvik Bhattacharya Valentina Clamer Ferdinand Pfab Department of Mathematics, University of Trento

Gianfranco Anfora Alberto Grassi Valerio Rossi Stacconi Fondazione Edmund Mach Centro Ricerche e Innovazione e Centro Trasferimento Tecnologico

EFFECT OF UNCERTAINTIES IN DEMOGRAPHIC FUNCTIONS

Different demographic functions randomly chosen within 95%-C.I. provide similar predictions.

Connection between PSP model and time-dependent delay equation

Start from
$$\frac{\partial L}{\partial t} + \frac{\partial}{\partial x}(g_L(E(t))L(t,x)) = -\mu_L(E(t))L(t,x).$$

Find $T(t_0)$ such that $\int_{t_0}^T g_L(E(\sigma)) d\sigma = 1$. $(t_0 = \tau(T))$ Then
 $L(T,1) = L(t_0,0) \exp\{-\int_{t_0}^T \mu_L(E(\sigma)) d\sigma\}.$
Using b.c. $g_A(E(t))A(t,0) = g_L(E(t))L(t,1)$, one has
 $g_A(E(t))A(t,0) = \frac{g_L(E(t))}{g_L(E(\tau(t))}e^{-\int_{\tau(t)}^t \mu_L(E(\sigma)) d\sigma} \int_0^\infty b(E(\tau(t)),x)A(\tau(t),x))$

If $b(E, \mathbf{x}) \equiv b(E)$, $\mu_A(E, \mathbf{x}) \equiv \mu_A(E)$, one gets a DDE for $\overline{A}(t)$.