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■ Dengue virus, a flavivirus transmitted by arthropod of the genus Aedes, is
prevalent in different parts of the world

■ The efforts of the eradication of dengue epidemics can be measured using
mathematical models

■ Modelling transovarial transmission
■ Thresholds
■ Epidemiological implications
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■ There is evidence that transovarial (the transfer of pathogens to
succeeding generations through invasion of the ovary and infection of the
eggs) transmission can occur in some species of Aedes mosquitoes

■ The role of transovarial transmission in the maintenance of dengue
epidemics is not clearly understood

■ The transovarial transmission of dengue virus in A. aegypti has been
observed at a relatively low rate

■ Mathematical modelling to evaluate the transovarial transmission
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Humans:

■ Human population is divided into three compartments: s, i and r, which
are the fractions at time t of, respectively, susceptible, infectious and
recovered persons, with s+ i+ r = 1. The constant total number of the
human population is N .

Mosquitoes:

■ Aquatic (immature) forms – l1 and l2 are the numbers of aquatic forms
(female) at time t of, respectively, susceptible and infected, and
l = l1 + l2 is the total number of aquatic forms

■ The female mosquito (adult) population is divided into two
compartments: m1 and m2, which are the numbers at time t of,
respectively, susceptible and infectious mosquitoes. The size of mosquito
population is m = m1 +m2
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■ The human mortality rate is µh.
■ The effective larvae production rate is given by qf (1− l/C)φm, where q

and f are the fractions of eggs that are hatching to larva and that will
originate female mosquitoes, respectively, and C is the total (carrying)
capacity of the breeding sites. Change rate of aquatic form to adult and
death rate of acquatic form are σa and µa. The female mosquitoes
mortality rate is µf .

■ Among humans the transmission coefficient (or rate) is βh, depending on
φ. The infected persons are transferred to infectious class by rate γh, and
are removed to recovered (immune) class by σh, the recovery rate. With
respect to the vector, the susceptible mosquitoes are infected at a rate βm.
These infected mosquitoes are transferred to infectious class at a rate γm.

■ The transmission coefficients βh and βm are divided by N .
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■ Modelling transovarian transmission
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d
dt
m2 = σal2 + βmφim1 − µfm2
d
dt
i = βhφ

N
m2s− (σh + µh) i

d
dt
l2 = qfφjm2

[

1− (l1+l2)
C

]

− (σa + µa) l2

d
dt
l1 = qfφ [m1 + (1− j)m2]

[

1− (l1+l2)
C

]

− (σa + µa) l1
d
dt
m1 = σal1 − (βmφi+ µf )m1

d
dt
s = µh −

(

βhφ
N

m2 + µh

)

s,

where j is the fraction of eggs with dengue virus from all eggs laid by infected
mosquitoes.
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Trivial equilibrium P 0, or disease free equilibrium (DFE),

P 0 =
(

m̄2 = 0, ı̄ = 0, l̄2 = 0, l̄1 = l∗, m̄1 = m∗, s̄ = 1
)

,

where l∗, p∗ and m∗ are given by







l∗ = C
(

1− 1
Q0

)

m∗ = σa

µf
C
(

1− 1
Q0

)

.

Clearly the mosquito population exists if Q0 > 1, where

Q0 =
σa

σa + µa

qfφ

µf

is the basic offspring number.
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Non-trivial equilibrium P ∗, or endemic equilibrium,

P ∗ =
(

m̄2 = m∗

2, ı̄ = i∗, l̄2 = l∗2, l̄1 = l∗1, m̄1 = m∗

1, s̄ = s∗
)

,

where
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βmφi∗+µf
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C
(

1− 1
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)

l∗2 = j βmφi∗

βmφi∗+(1−j)µf
C
(

1− 1
Q0

)

m∗

1 = (1− j)
µf

βmφi∗+(1−j)µf

σa

µf
C
(

1− 1
Q0

)

m∗

2 = βmφi∗

βmφi∗+(1−j)µf

σa

µf
C
(

1− 1
Q0
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s∗ = 1− σh+µh

µh
i∗

i∗ =


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µf (Re−1)

βmφ+
µf (σh+µh)

µh
R0

, for j < 1

µfR0

βmφ+
σh+µh

µh
R0

, for j = 1
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The net reproduction number Re, which encompasses transovarial
transmission, is

Re = R0 +Rv,

where the reproduction number for horizontal transmission is

R0 =
βhφ

µf

βmφ

σh + µh

m∗

N
.

and Rv = j is the reproduction number for vertical (transovarial) transmission.
R0 can be split in two partial contributions Rh

0 and Rm
0 defined by

{

Rh
0 = βhφ

µf

Rm
0 = βmφ

σh+µh

m∗

N

thus R0 = Rh
0 ×Rm

0 .
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The combination of s∗, m∗

1 and m∗ results in

s∗
m∗

1

m∗
= χe =

1− j

R0

and the threshold of product of fractions χ−1
e , which encompasses transovarial

transmission, can be written as

1

χe
=

R0

1− j
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Stability of DFE:

■ Three methods – Next generation matrix, Routh-Hurwitz criteria and
M-Matrix

■ DFE is stable if Re < 1, or, equivalently, χe > 1

Reproduction numbers:

■ R0 – It is the basic reproduction number, that is, the average secondary
cases in the beginning of epidemics

■ Rv = j – It accounts for long term infection
■ Rv = 1 – Infectious (aquatic and adult) forms displace susceptible forms
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■ Rv = 0 and Rg = R0 = 1.0049448
■ Rv = 0.2, R0 = 1.0049448 and Rg = R0 +Rv = 1.0049448
■ After initial 11.1× 103 days, the infectious humans and mosquitoes are

higher when transovarial transmission occurs
■ The highest relative differences between infectious humans

((ij=0.02 − ij=0) /ij=0) and mosquitoes (
(

m2j=0.02
−m2j=0

)

/m2j=0.02
)

with and without transovarial transmission are 12.95% and 13.88%
■ These highest differences occur at the peak of the first epidemics

(24.6× 103 days)
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Displacement of susceptibles by infectious
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■ Jacobian and Next generation methods yielded same basic reproduction
number (also, the product of the fractions of susceptible populations)

■ Horizontal transmission modellings – One threshold (R0)
■ Spectral radius is the geometric mean of partial reproduction numbers
■ The basic reproduction number is the product of the partial reproduction

numbers
■ Incorporating vertical transmission in modellings – Two thresholds (Re

and χe)
■ Short (R0) and long (Rv) terms in dynamics
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Thank You

Yang, H.M. (2017). Epidemiological implications of the transovarial
transmission in the dynamics of dengue infection. Math. Biosc.: submitted.
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