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Renewal equation

a simplified model for cannibalism, |3]

log

Bifurcation diagram w.r.t. v, with detection of a
period doubling cascade, M = 11.

Daphnia-type model
+

a physiologically structured model with
individual growth and maximal age, |5]
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Delay differential equation

an age structured model with continuous
reproduction and no maximal age, [1]
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w.r.t. 7, M = 20.
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Daphnia-type model

a physiologically structured model with
no maximal age, |4]
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The problem

Mesh of M + 1 points in Z,
Let 7 > 0 be the maximum delay. Then

if 7 < o0, let p=0and Z = [—7,0]
if 7 =o00,let p>0and Z = (—o0,0]

Denote x:(0) := x(t + 0), 0 € Z and define

0 — 0k

X = LY(Z,R) = {p: T > R | / "1 5(0)|d6 < oo}
A
Y =0Co,(Z,R):={¢y: T >R elim e”®(0) =0

sup e”’|1(6)| < oo}
o0c’L

and

A generic nonlinear system of coupled equations is

{x<t> = F(zt,y2),
y(t) = G(xt, yt),

for ¢t > 0, with x; € X, y: € Y, and
F.G: X xY — R.

CIZM(t) ~ CB(t),

ey yn (1) ~ y(t),

Vi, j
Yo = w3 (1)

Motivated by results from approximation theory, it
T = o0 we approximate the mapped states

e”? x4 (0), e’y (0), 0ecl.

analysis, SIAM J. Appl. Dyn. Syst., 15(1): 1-23.

Pseudospectral discretization

— T <Oy <Opy_1<---<60p=0

Lagrange basis and differentiation matrix,

Weighted interpolation of x € R, & € R,

P (x,®)(0) = ™o (0) x + > e li(0)

Let xpr,yns € R and Upy, Vs € RM s.t., for 7 > 0
Unr,i(t) = epejx(t + Onr.5),
~ epejy(t+9M,j)

The approximating ODE system in R*™ ! is
Ul = @nateng == DpeUpr —
yr = G(e™ " Pz, Unt), € P (ynr, Vir))
Vir = dyysr + D Var — pVs

where s is implicitly defined by
zv = F(e " pu(zn, Unm), e P (ymr, Var))

|1] E. Beretta and D. Breda (2016), Discrete or distributed delay? Effects on stability of population growth, Math. Biosci. Eng., 13(1):19-41.

|2] D. Breda, O. Diekmann, M. Gyllenberg, F. Scarabel and R. Vermiglio (2016), Pseudospectral discretization of nonlinear delay equations: new prospects for numerical bifurcation

In the examples above, the approximating ODE
systems were analyzed with the continuation
package MATCONT for MATLAB, for a certain
discretization index M. The figures show the
results of the numerical bifurcation analysis when
varying some parameters of the systems.

Applicable to:

e Volterra integral equations, integro-differential
equations, coupled equations

Dy,

0 0el

e nonlinear equations: no need to linearize
e discrete, distributed and unbounded delays
e state-dependent discontinuities (e.g. maturation)

Other advantages (see |2, 3|):

easy ODE formulation
evidence of spectral convergence, O(M ~*)
pUns one-to-one correspondence of equilibria

exploits available software for ODEs
Problematic issues:

e computational time due to external ODEs and
other complexities of the Daphnia model

e approximation of non-smooth solutions
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